
Functional and Technical Architecture Specifications
EUROPEAN COMMISSION

DIRECTORATE-GENERAL FOR
COMMUNICATIONS NETWORKS,
CONTENT AND TECHNOLOGY

Future Networks
Cloud and Software

D1.3.1.2 Functional and Technical Architecture Specifications

SC1

Document Control Information

Settings Value

Document Title: D1.3.1.2 Functional and Technical Architecture Specifications

Project Title: SC1

Document Author: Sovereign-X

Doc. Version: 0.2

Sensitivity: Limited

Date: 13 déc. 2024

Document history:

The Document Author is authorised to make the following types of changes to the document without requiring that the document be re-approved:

Editorial, formatting, and spelling
Clarification

To request a change to this document, contact the Document Author or Owner.

Changes to this document are summarised in the following table in reverse chronological order (latest version first).

Revision Date Created by Short Description of Changes

0.2 13 déc. 2024 Sovereign-X SfR M9 second iteration

0.1 30 sept. 2024 Sovereign-X SfR M9 first Iteration

Configuration Management: Document Location

The latest version of this controlled document is stored in .Functional and Technical Architecture Specifications

Table of Contents

Introduction
Scope of this document
Target Audience
Changes with respect to the previous version

Simpl-Open High Level Overview
Simpl-Open Description
Data Space Concepts
High Level Architecture
Architecture Framework

Simpl-Open Business Architecture
Actors
Simpl-Open Functional Architecture
List of Business Processes and Functional Requirements

Simpl-Open Application Architecture
Application Components Views
Interfaces
Traceability from the functional architecture

Simpl-Open Data Architecture
Open-Source Components Data Model
Custom Components Data Model

Simpl-Open Technology Architecture
Technology Components Views
Technology Deployment View
Technology Open-Source Products
Detailed Technical Specifications

DevSecOps Approach
Overview
Planning and Design of Clusters
Cluster Provisioning and Setup
Security and Access Control
Continuous Deployment and GitOps
Testing
Monitoring and Logging
Backup and restore
Deprovision of Environments

Annexes
Annex 1 - Glossary of Terms
Annex 2 - Mapping between functional requirements and components
Annex 3 - Non-Functional Requirements
Annex 4 - Architecture Patterns
Annex 5 - Architecture building blocks

Introduction

Scope of this document

The purpose of this document is to describe the functional and technical architecture of Simpl-Open, following the approach further described in the
Architecture Approach section. It includes the following content (non-exhaustive list):

A high-level overview of Simpl-Open architecture vision;
A description of Architecture Principles, Assumptions and Decisions that drive the Simpl-Open architecture;
A description of the Simpl-Open architecture from a business, application, data and technology perspective, each of them described using
appropriate diagrams (BPMN, ArchiMate, UML);
A description of the Simpl-Open security architecture.

Target Audience

The intended audience of this document comprises people involved in the architecture, design, integration, testing and maintenance of Simpl-Open.

It mainly targets architects, but can also be helpful for developers, testers and other stakeholders involved in Simpl-Open, as well as stakeholders involved
in Simpl-Live or other data spaces interested in integration of Simpl-Open.

Changes with respect to the previous version
The current version is the first version of this document.

Simpl-Open High Level Overview

Simpl-Open Description

With the ongoing exponential growth of data, there is a pressing need within the European Union to provide access to resilient and competitive data
storage and processing capacities for both the private and the public sector. In particular, the European Commission aims to address the need for more
data sharing and decentralised data processing closer to the user (at the edge). It is also critical to deploy EU data services in the public and private
sectors to grant Europe a leading status as a data-driven society and improve data usage within the European Union. The data services of various
organisations within the same industry sector should be abstracted into sector-specific data spaces. This could bring several benefits, such as greater
productivity, improvements in health and well-being, adaptation to environment and climate change, transparent governance and convenient public
services.

To support the above-mentioned objectives, the European Commission is creating an open source, multi-vendor, large-scale, modular and interoperable
middleware called "Simpl-Open". Simpl-Open will be the basis for a European Cloud Federation enabling the operation and interconnection within and in
between various European data spaces and the safe migration of the users to the cloud.

Simpl-Open will federate data, application, and infrastructure across the European Union with secure, resilient, energy efficient, and accessible cloud-to-
edge capabilities. It will allow EU stakeholders to pool together resources to create more business value, increase resource usage efficiency, and reduce
costs and duplication of efforts. Simpl-Open considers both the public sector as well as EU business as core stakeholders. Using the features provided by
Simpl-Open, an open marketplace for EU resources will be created that enables energy-efficient reuse of efforts achieved by other EU participants.

The following figure displays how the architecture vision of Simpl-Open maps the five actor groups (see definition in Actors section) and different data
spaces:

At the core of data spaces lie the five types of actors that Simpl-Open considers. These actors are a symbolic representation of a distributed network of
cooperating parties in an open ecosystem. Simpl-Open, represented by the Simpl-Open Agent, spans across these actors, enabling asset sharing between
them. It provides common services on which data spaces can be built. Simpl-Open stays agnostic to the specifics of a particular data space, allowing
additional data space specific services to be added on top of Simpl-Open. This added layer can, for example, contain standards on data representation,
enforce common quality certifications, or define peer review rules to assess data quality. The data space specific services tailor the ecosystem beyond
simple sharing of assets; they make sure those assets become valuable to participants.

Simpl-Open does not only aim to be used to build data spaces, it also creates interoperability between data spaces. As multiple data spaces incorporate
Simpl-Open, data spaces become more connected. This enables services to cross the boundaries of specific data spaces. Such services will initially be
more limited, as Simpl-Open cannot capture the details of all different data spaces. It will be up to the user to deal with the specifics of each data space in
interpreting the assets that it obtains. To make this illustrative view more tangible, the following figure presents an example of how a set of distributed
actors might interconnect to form a data space. It is important to note that this figure displays one possible scenario of many possible ways different
participants might interact. The number of participants in a data space or the number of stakeholders behind a single actor is only limited by its technical
feasibility. This implies that large numbers of participants and stakeholders can simultaneously. The Simpl-Open Agent in the figure serves as an interacts
abstract component that actors need to deploy to become part of the data space.

It is important to note that each of these displayed actors are an abstraction to the internal systems of one or more stakeholders. The deployment of Simpl-
Open in a data space can have various degrees of granularity. The stakeholder behind an actor can be an individual user that has the capabilities to
deploy a Simpl-Open Agent, or can be an entire data sharing initiative on its own. It is up to the data space governance authority to decide how Simpl-
Open best provides value, and what level of granularity of the deployment fits best.

Data Space Concepts

This section defines general concepts that are necessary for a good understanding of the Simpl-Open documentation and ecosystem in general.

Actors and Data Space Deployment

As described above, a data space consists of (individuals or entities) who need to interact with each other. In Simpl-Open, it is assumed that actors
individuals (called) are always part of an entity (called). A participant can operate one or multiple (s) which represent a distinct end-users participant node
and/or isolated set of IT resources and can participate to different data spaces with various participant (including Data Provider, Application Provider, roles
Consumer, Infrastructure Provider and - exactly one - Governance Authority). Nodes can also be spread across physical locations.

Example: a university (=) which embodies students, researchers or accountants (=). The university has a dedicated network (with participant end-users
connected IT resources) for its sciences department (= the sciences) hosted in Paris (=) and a dedicated network for its economy node physical location
department (= the economy) hosted in Rome (=). The sciences department might want to offer the results of its researches (= node physical location
data provider) to a science-related data space while the economy department might want to consume data (= consumer) from an economy-role role
related data space.

Simpl-Open Agent is a middleware, to be deployed on each node, acting as a local gateway for secure communication within a data space.

The following diagram illustrates this deployment view:

The following diagram translates the above deployment view into a data domain model to better understand the relationship and cardinality between the
different entities.

Data space Participant: Tier I and Tier II

Only the HL concepts of Tier I and Tier II are presented here as it is required for a good understanding of the next sections. More details can be found in
the Simpl-Open Application and Technology Architecture, especially related to Domain 1.

Identification, authentication and authorisation are of paramount importance within a data space.

The identification must be supported by the This authority is in charge of reviewing the identity details of organisations that want to governance authority.
participate in the data space. If the authority approves , it provides a proof of identification that the the participation of and organisation in the data space
organisation installs in its Simpl-Open Agent. With this proof, the participant authenticates itself to other data space participants and other participants
define authorisation rules based on the verifiable identity.

1.
2.

1.

2.

1.
2.
3.

The identification system plays an important role in two functionalities of Simpl-Open:

Establish secure communication channels;
Provide the information on which participants can base themselves to define access and usage policies.

To keep the identification system manageable in a large-scale environment, the identification is split into two tiers:

The manages the identification, authentication and authorisation of the organisation's members (humans or machines) to use the Simpl-first tier
Open Agent of their organisation;
The identifies and authenticates the organisation as a whole in the Simpl network.second tier

The figure below depicts this two-tier approach:

In the , the Simpl-Open Agent connects to the preferred IAA system of the organisation: EU Login, eID, Microsoft AD, OpenID Connect, etc. This first tier
mechanism is already well established and not unique to Simpl.

The involves the machine-to-machine authentication and identification of an organisation in the Simpl network. Each organisation holds an second tier
"Identity" file to support the identification, authentication and authorisation of the organisation in the data space. Recalling the two functionalities that the
IAA supports, the necessary content of this Identity file becomes apparent:

For the , the Identity file should contain a proof of the establishment of a secure communication channel between participants (1)
organisation’s public key. Each data space participant will create a cryptographic public/private keypair that is used in the asynchronous
authentication mechanisms needed to establish a communication channel. An example of how such a secure communication channel can be
established is the well-known TLS/SSL protocol. The Identity file associates the public key of an organisation to its identity. Proving the identity of
the organisation then becomes proving the possession of the private key that belongs to the respective public key. This way, the organisation can
be authenticated in the network and a secure communication channel can be established.
Access control and authorisation by providers (2) can be performed based on custom identity attributes of an organisation. Examples of such
attributes are the organisation name, geographical location, whether it is a private or public institution, etc. Based on these attributes, providers
can define access and usage policies for their resources. For example, a provider can open a resource to all public institutions, or to all
participants from a specific Member State. On the other hand, the access control policies can be more stringent and access is only allowed for a
specific organisation. The Identity file proves the attributes of an organisation, and, as such, ensures the trust on which a provider can rely to
enforce their access control.

Access Control & Trust

How IAA works at a high level:

Roles are used to enforce (role-based access control) to end users that access SIMPL Open functionalities in tier 1;RBAC
Identity Attributes are used to enforce attributes-based access control) in the agent-to-agent (node-to-node) communication in tier 2;ABAC (
Assignable Identity Attributes are used to be assigned to enabling end users belonging to those roles to act on behalf of the Participant Roles
in a certain context.

Second Tier IAA - X.509 certificates with dynamic attribute provisioning

For clarification purposes, next an example is shown on how Tier II will work in practice:

1.1 - John logs into the IAA Tier 1 System. Doe Consumer

1.2 - IAA Tier 1 System user roles from Simpl-Open Agent module and assign to the rights to access the data space retrieves User roles John Doe
functionality through 's Simpl-Open Agent, from now on all actions performed by are actually performed by the Simpl-Open Agent of Consumer John Doe

which in turn interacts with the other Simpl-Open Agents (Provider and/or Data space built-in capabilities).Consumer

2.1 -John Doe makes the infrastructure request to the Provider Simpl-Open Agent that validates it against the Access Control and Trust capability.

2.2 - Provider and authenticate each other using the mutual x509 TLS Authentication. Consumer

2.3 - Provider and verify validity of the x509 certificate through the Consumer Identity provider federation.

2.4 - Provider enforces access control policy based on embedded identity attributes and authorise Simpl-Open Agent. Consumer

2.5 - Consumer r to .equests his own identity attributes ephemeral proof Identity provider federation

2.6 - Identity provider federation responds to ephemeral proof with identity attributes.Consumer

2.7 - Consumer sends ephemeral proof with identity attributes to . Provider

2.8 - Provider checks and validates the ephemeral proof, then enforces access control policy based on embedded identity attributes and authorises Consu
 Simpl-Open Agent.mer

3.1 - Once verification against is successfully passed, uses his own module Access Control and Trust the Provider Infrastructure/User data services
to fulfill received requests:

3.2 - Provider checks the policies querying Contracts module.

3.3 - Provider enforces retrieved contract policies.

3.4 - Activate module to fulfil the requested resource. the Provisioning

4 - Provider returns an response to affirmative Consumer request.

The process explained above is depicted below :

Connector

The defines the connector as being the technical core component required for a participant to join a data space.IDSA Reference Architecture Model

DSSC defines the connector as a technical software component that is run by (or on behalf of) a participant and that provides connectivity with similar
components run by (or on behalf of) other participants, to enable the secure and trusted sharing of data.

A connector can provide more functionality than what is to connectivity. The connector can offer technical modules that implement data strictly related
interoperability functions, authentication interfacing with trust services and authorization, resource description, contract negotiation, etc.

DSSC uses “participant agent services” as the broader term to define these services.

 also the 2 major components that make up a connector:DSSC distinguishes

The is responsible for deciding how data is managed, routed, and processed. For example: the control plane handles the control plane
identification of users and the handling of access and usage policies.
The handles the actual exchange of data.data plane

https://docs.internationaldataspaces.org/ids-knowledgebase/ids-ram-4/layers-of-the-reference-architecture-model/3-layers-of-the-reference-architecture-model/3-1-business-layer/3_1_1_roles_in_the_ids#basic-roles-in-the-international-data-space
https://dssc.eu/space/bv15e/766062287/7+Interoperability
https://dssc.eu/space/BVE/357075035/Functional+Overview+of+Components

1.
2.
3.

This implies that the control plane by its nature can be standardized to a high-level, while the data plane is likely to be different for each data space (as
different types and sorts of data exchange take place in each data space).

The data plane needs to be integrated with the control plane to ensure that it can work with the necessary control mechanisms.

DSSC identifies the different categories of components within a data space, making a distinction between the (1) participant agent (= connector in DSSC
vocabulary) and (2) shared services:

Within the control plane, several components can be identified:

A Participant Wallet: providing participants with the ability to store and exchange identities and other attestations. For instance in the form of
Verifiable Credentials.
A Data, Services & Offerings Catalogue: providing participants with the ability to share (on a technical level) the data, services and offerings which
are provided through the data plane.
Components for Contract Negotiation: providing participants with the ability to share data access and usage policies with others in the data space
and to enforce these on the data plane. For instance: to create an authorization registry, which - based on policies - can determine who gets
access to a certain data set or service.

On the data plane there is the actual transfer process. As indicated before, the data plane is likely to be highly application specific. It should however work
in conjunction with the control plane, e.g. to ensure that data sharing can start before certain conditions are met (identification, contract negotiation, no
etc.).

Note that components of the connector can have different granularities. They can be conceived as an integrated component, but they can also consist of
multiple (packaged) components (e.g. with a seperated, but linked, component for Participant Wallet).

Concretely for Simpl-Open, a is used to implement the 3 parts of the IDSA Data Space Protocol :connector

Publication and request of catalogue items - mapping to ;Data, Services & Offerings Catalogue component of the control plane
Contract negotiation - mapping to Contract Negotiation component of the control plane;
Data transfer process - mapping to the Data Plane.

The control plane of the connector is also used as orchestrator between the 3 parts.

Current implementations of connectors do not cover all the needs envisioned in Simpl-Open and therefore extension points are planned, for instance, to
cover the infrastructure provisioning.

High Level Architecture

This section elaborates on the High Level Architecture of Simpl-Open. It presents the capabilities of Simpl-Open and the building blocks that support these
capabilities. It is important to remark that the high level architecture lays out the capabilities of Simpl-Open as a whole. How these capabilities are realised
is then described in the following sections of the document.

1.

2.

3.

4.

5.

Five architectural layers describe Simpl-Open: the integration , the data layer, the infrastructure layer, the administration layer and the governance layer
layer.

The integration layer contains the capabilities that enable participants to integrate with each other in a secured and trusted manner. This is
. These capabilities regard security, t, resource required for the of a data space integrating Simpl-Openwell-functioning access control and trus

discovery, .federation management, network and IT application framework
The encompasses the capabilities to enable the exchange of data resources and applications. Simpl-Open offers data consumers the data layer
means to access different types of data from different providers, enabling interoperability between providers and consumers. The layer contains
the capabilities to share as well as manage data and applications, and perform basic analysis.
The has similar responsibilities for managing infrastructure resources. This layer allows Simpl-Open to connect to third-party infrastructure layer
infrastructure resources, such that end users can, for example, . Simpl-Open does not provide infrastructure itself, execute applications on them
but allows infrastructure providers to open up internal infrastructure towards data space participants. Both elemental computing and storage
resources (e.g. virtual machines, file system storage) as well as PaaS services (e.g. databases, AI hardware) can be provided. The infrastructure
layer allows end users to utilize, and manage infrastructure resources offered by infrastructure providers.
The vertically . It administration layer spans the data, infrastructure and integration layers provides supporting capabilities for the well-functioning

 The administration layer allows actors to operate their components in the data of the other layers, as well as for the administration of Simpl-Open.
space.
Last, the addresses transversal capabilities that apply to all the aforementioned layers as aggovernance layer it provides contingency measures
ainst issues the participants might find while using Simpl-Open. The two main capabilities in this layer are composed of human that task forces
either support the participants in finding solutions to technical problems or trigger a response action against security threats in the form of a
Computer Security Incident Response Team (CSIRT).

Each of these five layers is further detailed in the following sub-sections.

Two types of capabilities are distinguished: user capabilities and supporting capabilities. The user capabilities represent the capabilities that are offered to
the users of Simpl-Open. Not all users will need the provided capabilities of Simpl-Open. Organisations acting as a data provider will, for example, not
require the user capabilities of the infrastructure layer. The supporting capabilities enable a correct functioning of the user capabilities. They do not add
immediate value to Simpl-Open actors, but run in the background to support the user capabilities. Simpl-Open actors also do not directly interact with the
supporting capabilities.

The concepts described in this section have been, for a large part, already developed in the Architecture Vision Document of the Simpl
. They are taken over in this document and updated/complemented where needed to stay up-to-date with the current Preparatory Study

developments of Simpl-Open.

https://ec.europa.eu/newsroom/dae/redirection/document/86241

The capabilities (depicted with light yellow boxes) group a set of building blocks (depicted with light orange or yellow boxes) that are required for Simpl-
Open to provide that capability to users. This vocabulary is aligned to Togaf methodology.

It must be noted too that another distinction is made in each of the layers between building blocks that can be accessed through Simpl-Open and building
blocks that are built into Simpl-Open. This is an important distinction, as building blocks that are accessed through Simpl-Open translate to software
components that are compatible with existing solutions through their APIs. Building blocks that are built into Simpl-Open require the absorption of possible
existing solutions into the software stack of the platform.

The architecture of Simpl-Open follows a loosely coupled self-contained architecture which groups components into building blocks, capability by
capability. This approach permits the deployment Simpl-Open agent in different flavours depending on the type of participant, e.g. an Infrastructure
Provider requires a different subset from the full Simpl-Open stack than a Data Provider. This modular architecture within a data space is presented on the
following :figure

The following sub-sections describe how the capabilities interact and offer functionalities to participants.

Details on the smallest scale building blocks are explained in Annex 5 .

Integration layer architecture

The integration layer provides the capabilities for participants to securely and trustfully integrate with each other

Consumers can find resources of a data space through the tooling provided by the capability. First, providers make their Resource discovery resources
(data, application or infrastructure) discoverable by submitting a of their resources – in a standardised format. Then well-structured metadata description
consumers can query the catalogues to find suitable resources within the data space. These catalogues describe the content of the resources, how to
consume them, and the policies that apply on this usage.

In the widespread context of Simpl-Open, is crucial to protect EU resources. As it will be described in Annex 5, security capabilities are constantly Security
active. The agreed level of security encryption and integrity on every data transmission or resource deployment must be granted for the consumer at any
time. For this reason, any provision of a resource will be inevitably deployed along with the security block, providing strong end-to-end security guarantees
of all data that is handled by Simpl-Open.

Related to the security capabilities, the functions gathered by capability will be constantly required whenever any participant (Access control & Trust con
 accesses Simpl-Open. Mapping end user roles with participant attributes (Role-Based Access Control - RBAC & sumer, provider or governance authority)

Attribute-Based Access Control - ABAC), as well as authorizations to proceed with an action are addressed here. In this sense, every relation of the user
with a data layer building block or infrastructure provisioning is closely screened by the Access Control & Trust. Simpl-Open will provide identification,
authentication and authorization (IAA) building block for communication between data space participants, and integrate existing IAA systems of
participating organisations for IAA of users within the organisation. To ensure that all access and usage policies are effectively enforced within the data
spaces, Simpl-Open provides a . It also provides the necessary capabilities to submit/review/approve onboarding requests policy enforcement capability
and deliver to the applicant the necessary security credentials to join a data space.

The capability contains building blocks for the establishment of secure network connections using technologies like virtual private networks. Network
Additionally a firewall protects unwarranted access to Simpl-Open components and backend services. These network capabilities are relevant for
connecting to infrastructure resources, as well as setting up the communication channels for data and application transfers.

The capability encompasses the general orchestration, as well as the supervision of the building blocks. It will oversee that the Federation management
main principles of federation and interoperability are met by providing the means to connect resources. The federation management will encompass the
needed configuration parameters for a well-functioning of Simpl-Open components. Such parameters may include the servers to connect to, rules
concerning the lifecycle of recorded data, network configuration, and other parameters.

Finally, the capability provides the necessary capabilities for the data spaces to deploy the building blocks in accordance with IT Application Framework
the proposed architecture (e.g. API Gateway, circuit breaker, service mesh, etc.).

Crucially, the Integration layer acts as an . Below sections describe how the Data and Infrastructure layer are organised. entry door towards the other layers
The data layer provides blocks related to applications and data, whereas the infrastructure layer provisions computing, storage, and other infrastructure
resources. When a consumer needs to access any of the building block belonging to the Data layer, the Access control & Trust capability is triggered to
assure the right permissions are given. Additionally, authentication and authorization mechanisms are a prerequisite for executing the Data layer building
blocks, such as the Application or Data sharing capabilities.

Once the Integration layer confirms the identity and the role of the end user, the of the administration layer is activated in order to verify contract capability
the terms agreed and the Service Level Agreements. After this process, data building blocks can be executed. The explanation above concerning data
building blocks is applicable to the Infrastructure layer building blocks in case the consumer is intending to access computing, storage, or other
infrastructure resources. Nevertheless, it will be common to combine data and infrastructure resource usage by means of a distributed execution. It must
be noted that beyond the usage of data and infrastructure resources in combination, independent use of infrastructure or data alone will be a possibility as
well.

When considering the security and orchestration needs for the global usage of any of the Data and Infrastructure layers building blocks, the Integration
Security and Federation management will be responsible of the correct encryption and verification deployments, assuring as well a correct allocation and
interoperability of the resources. It must be noted however that both the Data and the Infrastructure layers will hold their own local orchestration blocks as
explained in their respective sections.

Data layer architecture

Two prominent capabilities are the and . These contain the building blocks required for providers and consumers to Application sharing Data sharing
exchange both data and applications. The capabilities create the connection between stakeholders to share data and application resources. The data
sharing capability encompasses several functions including management of various types of data sharing, from transferring a single, few megabyte file, to
transferring a terabyte-sized data dump. The foresees a simple data transfer mechanism and two special types of data transfer: Simpl-Open architecture
bulk transfer and data streaming. A datastore connector handles the connection to the backend data store of the data provider, which can vary from a
simple file storage to a relational database system. Additionally, this layer addresses a number of scenarios where tools will be desirable Data processing

. Among these tools, data anonymization tools support data providers and consumers to protect the to process data as near as possible to the source
privacy of data owners. On top, tools are offered by Simpl-Open for and providers who can verify the integrity and quality of Data governance consumers
the .required datasets

Sharing applications is similar to sharing data. Indeed, at their core, applications are no more than a collection of data that is marked to be executable.
However, specifics of application sharing come in terms of formats and the fact that usually multiple files need to be combined correctly to be able to run
the application. It also adds additional considerations to handle the security of executable code and the trust that consumers have in the provided
application. Simpl-Open will define the procedures to use for sharing applications. The application sharing capability considers three types of applications:
full-fledged software packages, isolated algorithms, and machine learning models. Each type of tool comes with different specifics and runtime
environment requirements that Simpl-Open should adhere to.

Additional building blocks of the data layer orchestrate data resources across Simpl-Open actors. The and Data orchestration Distributed execution cap
s allow actors to pool together data from different sources and manage partial sets of data across infrastructure providers when executing distributed abilitie

applications. The combination of these capabilities allows consumers to gather data from different providers and spread it over distributed infrastructure
where data is fed into an application.

Infrastructure layer architecture

The capabilities provided by this layer enable the consumers to easily provision the necessary computing and storage resources to execute their
workloads in a secure and energy-efficient way.

The , automates the provisioning of the infrastructure resources to enable the various infrastructure providers to interconnect infrastructure orchestration
and get exposed via a standard interface. The , allows the consumer to deploy applications and execute computations close to the distributed execution
data.

The capability provides the opportunity to provision various resources to execute computations or store data in the environment cloud & edge computing
of their choice. The provide several database engines and other platform-level resources. Finally, the capability building blocks platform-as-a-service HPC
permits the consumer to perform complex calculations at high speed by providing a cluster of high-performance computers.

The infrastructure building blocks can be easily combined with each other to create even more value for the consumer. For instance, after successfully
analysing certain data with the help of the provisioned analytical resources or the capability, the consumer may want to store the used datasets PaaS HPC
and/or the results of their calculations. In this case, the storage building block can easily fulfil the storage needs of the end user In case a consumer PaaS .
would like to develop a stand-alone application, they may also use various resources at the same time. They can leverage the different storage PaaS
options to store each sort of data in the most efficient manner (e.g. the transactional data in a transactional database, while the sensor data in a NoSQL
database). Besides, they can use the capabilities to deploy and run their applications, and the capability cloud & edge computing distributed execution
even enables them to run the code close to the edge.

Administration layer architecture

The administration layer addresses the main capabilities that will assure the correct delivery of capabilities within Simpl-Open. Despite being depicted as
isolated bubbles, capabilities and building blocks are strongly related and further discussed (see Annex 5). The function of this layer can be described as a
set of supervision and management functions that will lead to a better control and interoperability of the rest of Simpl-Open building blocks. Along with the
later described governance layer, it will play an executive role within Simpl-Open.

Whenever through Simpl-Open, the capability will determine if the licenses are correctly delivered. It will also a consumer accesses a resource Contracts
register the billing terms and will manage the service level agreements as specified by the providers, as well as managing the permissions related to data
sharing. The usage contracts will be accessible through this Administration layer every time a consumer requests a data or computing resource.

The , and capabilities are strongly interconnected. Logging Monitoring Reporting In the case of Logging, it is regarded as the real time information
 screening the collected information and registering alerts and usage information concerning other layer´s building collection, while Monitoring is about

blocks, as well as energy and quality of service optimization. On the other hand, the Reporting capability will handle the historical record of such
information, as well as the general platform usage, allowing the relevant stakeholders to export and log the extraction of the information obtained. These
two capabilities could be visualised as a supervision of the processes taking part at every layer level within Simpl-Open. Should additional action be taken,
the Governance Authority will resolve the situation with the assistance of other Administration layer blocks such as Security or Contracts.

In order to analyse if the resources given by Simpl-Open are meeting contracts, access or security requirements, an auditing tool in the capability Audit
will be capable of receiving information inputs from the logging, reporting and monitoring building blocks. By comparing what is expected from Simpl-Open
resources and what is actually happening at a resource delivery level, the audit capability will interact with the Logging, Reporting and Monitoring
capabilities.

The Administration layer will perform consistent and continuous analysis of the usage with the help of the Reporting and Monitoring capabilities. Along with
the Auditing capability, the Administration capabilities will extract valuable information about the resources exchanged between the consumer and the data,
application, and infrastructure provider(s). This will include analysis of the usage kept in metrics logging and real-time monitoring, which will be transferred
to the reporting capability for a wider history data recording. In this reporting function, performance of deployed resources, the level of efficiency or the
usage of the platform and the sustainable utilization will be supervised by the administration.

Governance layer architecture

The capabilities provided in the governance layer enable the support and management of Simpl-Open. The governance layer can be divided in two
categories of governance capabilities: Support and CSIRT (Computer Security Incident Response Team).

The capability is associated with the administration layer of the architecture and will assist Simpl-Open end users when issues arise during Support
installation of Simpl-Open and during the use of other building blocks from Simpl-Open. Three building blocks are currently foreseen in the support
category, The second support building block is a Ticketing system where Simpl-Open the first building block is a Support webpage .for Simpl-Open users
end users will be able to log and keep track of issues regarding Simpl-Open and the third building block is a Helpdesk where Simpl-Open end users can
connect to in case issues remain unsolved.

The capability is the second category of governance capabilities which includes the incident response and Computer Security Incident Response Team
threat monitoring building blocks. The Incident response building block will have procedures to respond to security incidents to restore the compromised
Simpl-Open functionality as soon as possible. The second building block, Threat monitoring, will proactively monitor and follow-up on possible malicious
activities that could affect Simpl-Open to avoid potential security breaches.

Scope covered by the MVP

Below figure depicts the capabilities that will be (partially) implemented as part of the MVP (December 2024):

1.

2.

3.
4.

5.

Architecture Framework

Architecture Approach

The architecture of Simpl-Open is created using a approach, inspired by the which is reflected in the structure of this layered TOGAF methodology,
document:

Business Architecture - describes how Simpl-Open should achieve its business goals and respond to the strategic drivers set out in the
Architecture Vision. This layer was already defined in the preparatory study and this document only provides an update on the functional
capabilities (which have evolved since then) and revisited concepts of business processes.
Application Architecture - develops the target application architecture of Simpl-Open that enables the business architecture and the architecture
vision, in a way that addresses the requirements. It identifies architecture components through Solution Views (business process-based
approach, both static and dynamic) and Deployment Views (agent type-based approach, static only).
Data Architecture - presents data entities and/or collections and how they are structured within the system.
Technology Architecture - develops the target technology architecture that enables the application architecture to be delivered through technology
components and technology services. Each application building block is mapped to a technology implementing the capabilities. Just like for the
application architecture, both Solution and Deployment Views are defined.
Security Architecture - covers the security aspects of the architecture.

The list of architecture principles to which we adhere is presented in the next section. Some of the architecture patterns used are also described in Annex
3 - Architecture Patterns.

The current version of this document the architecture of the MVP only and as such, following sections only focusses on components covers
implementing the capabilities mentioned above as being in scope of the MVP.

Placeholders have also been added for content that will be made available after the MVP, with clear disclaimers at the beginning of the
respective sections.

Architecture Principles

Simpl-Open is designed upon ten architectural principles. Each of these principles is applied throughout Simpl-Open’s design. They are all equally
important to the design. The following figure provides an overview of these principles:

Federation: Federated systems describe autonomous entities, tied together by a specified set of standards, frameworks, and legal rules. Simpl-
Open should federate data, infrastructure and applications. This principle is key to enable interoperability and information sharing among the
different entities that will be part of Simpl, while giving maximum autonomy to service owners.
Modularity: The architecture of Simpl-Open needs to be defined in a modular way which allows the or addition of components replacement
without affecting the rest of the system. This also provides the possibility to implement every component with a different open-source technology.
Through modularity, Simpl-Open users are able to deploy a specific subset of components that are tailored for their purposes.
Loose coupling: Components and services should have minimal dependencies on each other. Standardised, business-oriented make sure APIs
consumers are not impacted by changes to services. This allows service owners to change implementation, switch out components, or modify
data records behind the APIs without downstream impact to end users. T .his principle ties in with the modularity and resilience principle
Resilience: Components of the architecture must be fault tolerant, such that failures in one of them will have minimal impact on other
components. Single points of failure need to be avoided to the maximum extent possible as the main objective is achieving a distributed
architecture.
Openness & agnosticism: The open specification allows insights into all parts of the architecture without any proprietary claims. It makes
adding, updating or changing components easy for all users. Services should be provided irrespective of specific technologies and should be
executable in all environments.
Composability & extensibility: Simpl-Open's architecture should allow services to deliver value to the business in different contexts, providing
the necessary tools to facilitate their composition together with other services to form new aggregated services. Simpl-Open remains open to
iterative growth allowing the addition of new services and capabilities that fit future use cases to the platform. An open development community
should be promoted in order to enable the contribution of new features that extend Simpl-Open's functionalities by its members.
Interoperability: Simpl-Open enables interoperability between its participants to share resources in a well-specified manner. The architecture
should describe the technical means to achieve and be agnostic to the specific implementation details of each participant.this
Scalability & elasticity: Simpl-Open the means to accommodate larger workloads and allow new entities and users on the platform provides
without affecting the performance. Both vertical scaling – i.e. the practice of adding more resources to a single node – and horizontal scaling – i.e.
the process of duplicating nodes – should be possible. Simpl-Open’s performance should be able to follow user demand without deteriorating.
Security, privacy & trust: Users of Simpl-Open must be confident that when they interact with other entities they are doing so in a secure and
trustworthy environment and in full compliance with Data confidentiality, availability and integrity must be guaranteed. relevant regulations.
Privacy of data subjects, Simpl-Open users, or individuals must be .assured
Discoverability: All services that are deployed in Simpl-Open will be ‘publicly’ exposed and discoverable in a service registry or catalogue. In this
context, ‘public’ is seen as visible by all approved participants of a data space, not the public internet. Services will adhere to a service
description, providing interested parties with a clear understanding of their business purpose and technical interface.

These architecture principles are completed with which can be found in the coding principles Development Handbook

Assumptions and Architecture Decisions

ID Topic Assumptions / Decisions

This information is based on currently available information tailored for MVP (December 2024 release) only.

1.
2.

3.

4.

1.

2.

3.

4.

1.
2.

1.

2.

1.
2.
3.

AS
M-
01

Data space data
management
(downloading
data vs using it)

Infrastructure provider is a mandatory intermediary to enable security of data processing.
It is the responsibility of the infrastructure provider to setup access control on the provisioned infrastructure tenant for
the consumer.
It is the responsibility of the data provider to setup policy enforcement measures (e.g. restricting download) on the
infrastructure tenant for the consumer.
In the case where data from the data provider is downloaded directly by the consumer (without an infrastructure
provider involved), then the "technical enforcement" is replaced by a "legal enforcement".

AS
M-
02

Possible data
sharing scenarios

The following scenarios to share data exist:

Simple Data Download:
Data Provider is willing to offer the possibility of downloading the dataset to the consumer.
The contract will create some legally binding usage policies. in scope for the MVP.
The data/app provider offers one, or a bundle of infrastructure instances that host both the data, and the application
that can process the data. The consumer still has the possibility of downloading the data, but the contract may prevent
it or put limitations/usage policies on it. not in scope for the MVP (but could be implemented in the future).
The data/app provider offers a bundle of infrastructure instances that host the data and the application that process the
data separately. The access will be provided only to the application (or the infra instance that hosts the application).
The consumer cannot access the data, and as part of the contract they shouldn't even try. could potentially be in
scope for the MVP.
Compute to Data or loading the data in confidential memory enclaves (such as Intel SGX). An advanced version of
Scenario 3, with more technical complexities. not in scope for the MVP (but could be implemented in the future).

AS
M-
03

Actors with
multiple
participant roles

One agent per participant role (i.e. multiple agents required if a participant plays multiple roles in the data space).
One standard deployment script per type of participant will be provided.

AS
M-
04

Distinction
between
Certificate
/Credentials

There is a clear distinction between credentials for securing the data space (Tier 1 and 2 IAA) and the credentials for
signing SDs and contracts (legally binding signature).

AS
M-
05

Data sharing
connector A connector agnostic "Asset Manager" will be developed, which can access different storage types and handle the

data transfer. For the MVP, existing plugins of the EDC connector will be used (such as the S3 object storage
extension, that can handle access management and data transfer, in case of contracting). The asset manager will be a
module of the agents.
The combination of the connector (any) and the asset manager will be a part of the agents, for example the consumer
and the provider agent.

AS
M-
06

Contract signature For the MVP, only a dummy signature will be used (not a legally valid one).

AS
M-
07

Usage of a data
space connector

Any communication/transfer between agents will be done via data space connectors. They are responsible to implement the
3 aspects of the Data Space Protocol (DSP):

registering and requesting service offerings in/from the catalogue;
negotiation of a contract;
enabling consumption of service offerings.

AS
M-
08

Storage attached
to VMs and
containers

It is assumed that VMs and containers always have an attached storage.

AS
M-
09

Type of storage
supported

It is assumed that Simpl-Open only supports natively S3-compliant storage but is extensible to support other storages
(offering an API).

AS
M-
10

Deployment and
termination of
built-in
applications

It is assumed that the application is always deployed and terminated together with the infrastructure resource as part of
deployment script.

AS
M-
11

Type of built-in
application
deployment
supported

It is assumed that Simpl-Open only supports natively applications deployed on Kubernetes but is extensible to support other
platforms (offering an API).

AS
M-
12

Supported
infrastructure
resources

It is assumed that Simpl-Open only supports natively:
S3-compliant storage
Kubernetes containers platform
VMWare virtual machines

but is extensible to support other platforms (offering an API).

Simpl-Open Business Architecture

Actors

An actor refers to an entity or participant that interacts with the system. Actors can be users, applications, Simpl-agent, etc. They play specific roles and
have distinct permissions within the data space ecosystem.

The following context diagram introduces the main actors that will interact with each other using Simpl-Open and their interactions.

These actors are defined as follow:

Appl
icati
on
Prov
ider

 The term The application providers cover all the data space actors offering applications to the consumers or any other type of participant.
“application” is used in a rather broad sense in this document, and it covers any sort of executables including applications, as well as algorithms,
such as a trained AI model that users can leverage to analyse their data. Application providers can also define the access control policies
regarding their resources and bill the users for their usage.

Data
Prov
ider

This category covers all the data space actors offering data to the consumers. They can share one or more data sets and regulate the access
and usage over the data with the help of policies. In order to compensate the data usage, the data providers can also bill the data space
consumers. An example of a data provider can be an energy network operator sharing data on the energy grid load towards energy production
facilities (who act as consumers) for production optimisation application.

Infra
stru
ctur
e
Prov
ider

The infrastructure providers offer infrastructure resources and services to the (or possibly to any other type of participant)to the consumers to
enable them to process the data provided by the data providers. They can, for example, launch virtual machines or containers and run
applications, algorithms, or other executables on top of the underlying infrastructure. Similarly to the data providers, the infrastructure providers
can define access control policies for the infrastructure resources and bill the middleware users for their usage.

Con
sum
er

A consumer aims at using data, applications and infrastructure shared by providers. They can search for these and use them as allowed by the
. For data, this means typically either using them online by utilising the infrastructure and applications provided by application and policies

infrastructure providers, or if policy allows, download them for local usage.

Gov
erna
nce
Aut
hority

The data space participant that is accountable for creating, developing, operating, maintaining and enforcing the governance framework for a
particular data space.1

1https://dssc.eu/space/Glossary/176553985/DSSC+Glossary+%7C+Version+2.0+%7C+September+2023

Simpl-Open Functional Architecture

The following diagram presents .Simpl-Open functional architecture

An agent per type of participant is represented and the functional components are represented as ArchiMate services.

Below are described all the functional components presented on the diagram, how they implement the building blocks from the high level architecture, and
how they interact between them. These interactions are highlighted with purple numbers on the diagram, which are linked to the below description through
the purple numbers between brackets.

https://dssc.eu/space/Glossary/176553985/DSSC+Glossary+%7C+Version+2.0+%7C+September+2023

1.

2.
3.

The component implements the Onboarding building block: it Onboarding provides the functionalities to submit, review and approve onboarding requests
and deliver to the applicant the necessary security credentials to join a data space.

Both consumers and providers (data/application/infrastructure) can request to join a data space through the component (). This component Onboarding 1
allows the governance authority to control the required onboarding documents and approve/reject the onboarding request (). If approved, the onboarding 2
component sets up accesses and rights into the component of the Governance authority () and delivers security credentials to the applicant (). IAA 3 4

The IAA component implements the Identity Provider Federation, Authorisation, Security Attribute Provider Federation and User Roles building blocks: it
serves as a security intermediary for all communications between actors and components of Simpl-Open.

Once a participant has received security credentials from the component, they install the credentials into their own component (). Once Onboarding IAA 5
installed, the component of all participants are federated, using the component of the governance authority as trust anchor (). In reality, the cIAA IAA 6 IAA
omponent is connected to any single component of Simpl-Open as any interaction with the agent must be authorised and authenticated. For the sake of
keeping the diagram readable, the relations between the component and all the other components are not represented on the diagram. IAA

The component implements part of the Metadata Description building block: it serves to harmonize the vocabularies in the data Vocabulary Management
space, by providing the definition of metadata representation and, if required, the data representation standards.

The g through the component ().overnance authority defines the vocabularies Vocabulary Management 7

The governance authority defines the schemas through the component ().Schema Management 8

The component implements another part of the it provides the functionalities to Schema Management Metadata Description building block: define the
ontologies and schema of the resource description (i.e. what properties can/should be part of it, what are their types, constraints and vocabulary).

The component implements the last part of the Metadata Description building block. It provides the functionalities to create and Resource Offering Editor
sign descriptions (in the form of Self-Descriptions). It remains up to date with current metadata description standards by fetching schemas and resource
vocabularies from the and components .Schema Management Vocabulary Management (9)

The implements the Resource Catalogue building block and part of the Search Engine building block. It provides the Federated Catalogue component
functionalities for providers to publish their resources and for consumer to discover these resources.

The component implements the remaining part of the Search Engine building block. It provides the functionalities for consumers to query and filter Search
catalogue items to find the most suitable resources.

The It Data Space Connector implements part of the , Usage Contract, building blocks. Resource Catalogue Data Orchestration and Simple Data Transfer
provides an implementation of the Data Space Protocol and acts as an orchestrator between its 3 parts:

Local Assets Catalogue in which the providers register the information, related to their own published resources, that is required for supporting the
contract negotiation and transfer process
Contract Negotiation provides the electronic contract negotiation required for consuming any type of resources
Transfer Process supports the triggering of the data transfer or deployment of other types of resources.

Providers (data/application/infrastructure) create and sign resource description in the component () and can then register it in Resource Offering Editor 10
the of their respective component (). The data registered in the of the Local Assets Catalogue Data Space Connector 11 Local Assets Catalogue Data

 is the minimal subset of metadata required to enable the 2 next parts of the DSP: contract negotiation and transfer process.Space Connector

Once registered locally, the Resource Offering Editor can publish the entire resource description (in the form of a Self-Description) to the Federated Catalo
 component ().gue 12

The validates the submitted resource descriptions against the schemas and ontologies provided by the Federated Catalogue Schema Management
component () and against the vocabularies provided by the component ().13 Vocabulary Management 14

Consumers can browse the resource offerings published in the through the component (). Instead of having a search Federated Catalogue Search 15
functionality embedded in the , the component is represented as a distinct component of the consumer agent, connecting to Federated Catalogue Search
the in the governance authority agent (), to enable the 2 tiers approach for IAA (the consumer end-user to the Search Federated Catalogue 16 connects
component via tier 1 and the Search component connects to the Federated Catalogue via tier 2).

Once consumers have found a resource offering that they would like to consume, they can request the consumption in the component which Search
initiates a contract negotiation with the provider through the component (). The component has obtained from the Data Space Connector 17 Search Feder

 the address of the provider's and the identifier to the resource offering, and provides these elements to the ated Catalogue Data Space Connector Data
. Based on these 2 elements, the consumer's initiates a contract negotiation with the provider's Space Connector Data Space Connector Data Space

 ().Connector 18

Based on the received resource offering identifier, the provider's can query to obtain the necessary Data Space Connector its Local Assets Catalogue
metadata to create a contract ().19

The provider's provides the contract to the consumer's for signature by the consumer ().Data Space Connector Data Space Connector 20

As signing a contract is not explicitly part of the data space protocol, the signature process is not implemented within the Data Space Connector. Instead, it
is externalised to the component ().Contract Management 21

The component implements the last part of the Usage Contract building block. It provides the functionalities to create, sign and Contract Management
persist usage contracts.

The consumer signs contracts through the component ().Contract Management 22

1.
2.

3.

Once signed by the consumer, its provides the contract back to the provider's for the provider to sign it (Data Space Connector Data Space Connector 23
). As for the consumer, the signature is delegated to the component () through which the provider can counter-sign the contract (Contract Management 24

). The component persists the signed contract and provides a copy to the consumer via their ().25 Contract Management Data Space Connectors 26

The component of the consumer persists the signed contract ().Contract Management 27

Once a usage contract agreement is established, the of the provider can start data and/or infrastructure consumption.Data Space Connector

For standalone infrastructure consumption (see BP 08), the of the infrastructure provider triggers the deployment of the Data Space Connector
Infrastructure Resource through the component ().Infrastructure Management 28

The component implements the Infrastructure Orchestration, VM Provisioning, Container Provisioning and Storage Infrastructure Management
Provisioning building blocks. It provides the necessary features to deploy and configure (incl. policies) infrastructure resources. It also partly implements
the Data Visualisation building block by providing the functionality to deploy a built-in data visualisation application on the infrastructure resources. The
remaining part of the Data Visualisation building block is implemented by the built-in application itself.

The component deploys and configures the requested () and provides access details back to the Infrastructure Management Infrastructure Resource 29
consumer via the ().Data Space Connector 30

The consumer gets access details from their () and can access the using these details (outside of Data Space Connector 31 Infrastructure Resource
Simpl-Open) ().32

For direct data download (see BP 09A), the of the data provider accesses the through the componData Space Connector Data Resource Data Transfer
ent ().33

The component provides the functionalities to access various types of data resources and transfer them between participants. ItData Transfer implements
the Data Orchestration and Simple Data Transfer building blocks.

The component accesses the Data Resource () and Data Transfer 34 transfers a copy of it to the consumer via the Data Space Connector (35). The
consumer's stores the copy of the Data Space Connector Data Resource on the consumer side (), which can be accessed by the consumer ().36 37

For access to data over an application deployed on an infrastructure, for the MVP, both the data and application resources are already available in the
infrastructure provider and are deployed together with the infrastructure resource. After the MVP, a solution involving the of both Data Space Connectors
infrastructure and data providers will be envisaged.

The component implements the Logging building block and part of the Monitoring building block. It provides the functionalities to collect and Observability
monitor logs and metrics from the other components of the agent.

In reality, the component is connected to any single component of Simpl-Open as all of them produce logs and are monitored. For the sake Observability
of keeping the diagram readable, the relations between the component and all the other components are not represented on the diagram. Observability

From the above architecture, we can distinguish 3 functional domains:

Onboarding & IAA - This domains provides the means to join a data space and establish trust between participants.
Publish and consumer resources - This domain is about the essence of a data space: allow to share resources (datasets, infrastructure,

 between the participants. applications)
Management/Operation of data space - This domain provides the functionalities that are necessary to manage and operate a data space.

Below table summarises how the functional components implement the building blocks from the high level architecture, and how they map to the functional
domains.

Functional architecture component High level architecture building block implemented Functional domain

Onboarding Onboarding Onboarding & IAA

IAA Identity Provider Federation

Authorisation

Security Attribute Provider Federation

Authentication Provider

User Roles

Onboarding & IAA

Vocabulary Management Metadata Description (partly) Publish and consumer resources

Schema Management Metadata Description (partly) Publish and consumer resources

Resource Offering Editor Metadata Description (partly) Publish and consumer resources

Federated Catalogue Resource Catalogue

Search Engine building block (partly)

Publish and consumer resources

Search Search Engine Publish and consumer resources

Data Space Connector Resource Catalogue (partly)

Usage Contract (partly)

Data Orchestration (partly)

Simple Data Transfer (partly)

Publish and consumer resources

Contract Management Usage Contract (partly) Publish and consumer resources

Infrastructure Management Infrastructure Orchestration

VM Provisioning

Container Provisioning

Storage Provisioning

Publish and consumer resources

Data Transfer Data Orchestration

Simple Data Transfer

Publish and consumer resources

Observability Logging

Monitoring (partly)

Management/Operation of data space

A mapping between the functional requirements level 2 and the functional components presented above is provided in annex.

List of Business Processes and Functional Requirements

The following table summarises for each of the business domain, the list of business processes that are (at least partially) covered by the architecture
described in this document. These business processes and the underlying functional requirements are available from the .Simpl Programme website

Domain Label ID (for Jira) Business Process BP ID Sub-process Published on website

1_Setup_of_Dataspa
ce

1 - Setup of Dataspace: Role of Governance
Authority

BP 01 No

2_Setup_of_ID
/Trust_Catalogues_a
nd_Vocabulary

2 - Setup of ID/Trust, Catalogues and Vocabulary BP 02 No

Domain 1 -
Onboarding &
IAA

3_Onboarding_of_a_
new_Dataspace_Part
icipant_(TI,TII)

3 - Onboarding of a new Dataspace Participant:
Providers of data, application or infrastructure and
Consumers

BP 03A BP 03A – Onboarding of a New
Dataspace Participant -
Providers (data - application -
infrastructure) & Consumers

Yes

BP 03B BP 03B – Onboarding of a New
Dataspace - Participant End-
User

Yes

4_Registration_of_"
Individual"
_Participants

4 - Registration of "Individual" Participants BP 04 BP 04 On hold until further
notice

Domain 2 -
Publish and
consumer
resources

5_A_provider_adds_
a_new_Resource_to
_Dataspace

5 - A provider adds or updates a new Resource on
data, application or infrastructure, on the
Dataspace’s Catalogue

BP 05A BP 05 – A Provider adds or
updates a new data-, application-
, or infrastructure resource on
the Dataspace’s Catalogue

Yes

6_A_Consumers_sea
rch_Resources_on_t
he_Dataspace

6 - Consumers search Resources on Dataspace’s
Catalogues

BP 06 BP 06 – Consumers search
Resources on Dataspace’s
Catalogues

Yes

7_Consumers_establi
sh_a_Contract_with_
a_Provider

7 - The Consumer and the Provider establish a
Usage Contract for selected Catalogue items

BP 07 BP 07 – The Consumer and the
Provider establish a Usage
Contract for selected Catalogue
items

No

8_Consumers_select
_and_use_an_Infrast
ructure_Resource

8 - Consumers select and use an Infrastructure
Catalogue Resource from the Infrastructure
Provider

BP 08 BP 08 – Consumer consumes
an infrastructure resource from
the provider

No

9_Consumers_select
_and_use_data
/application_Resourc
es

9 - Consumers select and use data/application
Catalogue Resources from the Data or Application
provider on the secure processing environment
(established by 8)

BP 9A BP 09A – Consumer consumes
a data resource from the provider

No

BP 9B BP 09B – Consumer receives
data processing service over a
dataset via an Application

No

https://simpl-programme.ec.europa.eu/book-page/simpl-requirements

BP 9C BP 09C - Consumers selects
and uses a Catalogue Resource
from the Provider (Application)

No

10 - Placeholder - BP 10 No

11 - Placeholder BP 11 No

Domain 3 -
Management
/Operation of
data space

12_Management
/Operations_of_the_
Dataspace

12 - Management / operations of dataspace
business (catalogues, vocabulary, clean up, etc.):

audit of the dataspace usage
management of participants
helpdesk (to be seen how/if/what is in scope)
CSIRT
billing should be a detailed use case

WF 12B WF 12B - Local Node Logging,
Monitoring (collection and
visualisation of events)*

*Technical Workflow only, as
this is not a BP

No

BP 12D BP 12D Audit by Governance
Authority

No

BP 12E BP 12E Billing of Catalogue
Resources Utilisations

No

13_IT_Administration 13 - IT Administration No Business Process, only
workflows/architecture views.

No

Simpl-Open Application Architecture
Simpl-Open Application Architecture develops the target application architecture of Simpl-Open that enables the business architecture and the architecture
vision, in a way that addresses the requirements.

It identifies architecture components through following views:

View Description

Application Components Static
View

Provide a view per business domain of the application "Solution", with all the main components and interactions.

Application Components
Dynamic View

Provide a dynamic view per business process (or sub-process) on how application components are used to satisfy
different workflows.

Next to these architecture views, are provided:

Workflows - technical information flows, not identified as business processes, which explain how a specific sequence/composition of application
components could satisfy a business process implementation, uman and machinewith clear distinction of h actors;
Interfaces - describes APIs and/or UIs for each relevant architecture component presented in above views.

An initial list of requirements stemming from the Simpl-Open tender specifications and which could drive elicitation of Simpl-Open non-functional
requirements is provided in Annex 4. Once these non-functional requirements will be elicited, they will be published on the Simpl website.

The following figure presents an overview of the application architecture components, grouped by Functional Domain of the business architecture:

1.

2.

Application Components Views

Application components views are presented per functional domain in following sub-sections.

For each functional domain, are presented:

a static view of the entire domain which presents all the application components that are necessary to implement the functionalities of the domain
and how they interact with each other;
a set of dynamic views that present how a subset of the application components are used to satisfy different (parts of) business processes.

ACV - Domain 1 - Onboarding & IAA

The static view diagram illustrates the structural organisation of components involved in the domain, segmented into two types of agents (Governance
Authority and a generic applicant/participant which can represent Consumer, Data Provider or Infrastructure Provider) , showcasing the roles each plays in
the domain.

As per the legend, components highlighted in red are foreseen to be part of Simpl-Open but are not part of the MVP, while components highlighted in grey
are external to Simpl-Open.

The red numbers on the diagram help to correlate APIs with their definition which can be found in the Interfaces section, while the green letters makes the
link with the User Interfaces which can be found in the same Interfaces section.

Onboarding

The component is deployed inside the Governance Authority Agent and it's the core for managing onboarding requests by applicants (Onboarding applica
. This is where the applicant requests new Tier 1 credentials and initializes its onboarding request. The nts can be both providers and consumers)

Governance Authority Tier 2 authorisation operator can approve, reject, or require new documents to fulfil the request. After the request has been
approved, the applicant must create its keypair to be associated with the credential and can submit the public key to the governance authority which
triggers the creation of a Tier 2 credential by the Identity Provider component.

Refer to ACV Dynamic - BP 03A - Onboard a Participant for a full description of a Participant Onboarding.

Identity Provider

This component is deployed inside the Governance Authority Agent. It generates the credentials for a newly onboarded participant and stores them along
with the participant's information. This component also allows the applicant participant to download the generated security credentials that can then be
installed in the Tier 2 Authentication provider of the participant agent.

Security Attributes Provider

The Security Attributes Provider component is deployed in the Governance Authority Agent and registers the participant's security identity attributes. Upon
approval of an onboarding request, the onboarding component calls the Security Attributes Provider to associate the security identity attributes to the
participant.

User & Roles

This component works as an interface in front of the tier 1 authentication provider. Its responsibilities are:

reading and writing users and roles in the tier 1 authentication provider
map the Tier 1 Roles to assignable security identity attributes
create an applicant user along with temporary credentials in the tier 1 authentication provider at the beginning of the onboarding process

Tier 1 Authentication Provider

The Tier 1 authentication provider contains the participant users, roles and allows IdP Federation.

Refer to ACV Dynamic - BP 03B - Connect/map Organisation Local IDP (Directory) for a full description of IdP federation.

Tier 2 Authentication Provider

The tier 2 authentication provider is the component that

manages the storage and update of the security credentials inside the Credentials Database/Vault component.

inside a participant, is involved in 2 steps after the onboarding request has been approved:

when the applicant representative creates/uploads a keypair into a participant agent
when the applicant representative installs the security credentials previously generated by the governance authority

in the communication between participants, helps the Authorization Tier 2 components to validate Tier 2 credentials (Ephemeral Proof and
Security Credentials)

Credentials Database/Vault

Component that handles the l storage of the participant credentialsphysica

Authorization

The authorization component processes all Tier 1 and Tier 2 inbound traffic originating from external sources and enforces RBAC and ABAC rules.

ACV Dynamic - BP 03A - Onboard a Participant

A new participant in a data space – whether a data provider, application provider, infrastructure provider, or consumer – begins by registering itself and
obtaining a temporary Tier 1 credential.

Using the , the new participant submits an by completing the required information forms.Tier 1 temporary credential onboarding request

The onboarding request is then processed by the Governance Authority and either . During the review process, the approved or rejected Governance
 to the applicant participant.Authority can provide comments on the onboarding request and submit requests for additional documents

Assuming the onboarding , the new participant creates a Tier 2 key pair and begins the process of obtaining a valid identity request gets approved
credential for its Simpl-Open Agent. This credential proves the ‘identity’ of the installed Simpl-Open Agent and enables secure communication with other
data space participants. Simpl-Open Agents will only permit communication with other network participants who hold a valid identity credential.

After the participant has successfully acquired a valid identity credential, they proceed to install this credential within their Simpl-Open Agent. This
, ensuring that it is properly recognised and authenticated.installation process involves integrating the credential into the agent’s system

1.

2.

3.

a.
b.
c.

4.

5.

6.

7.

Applicant Participant creates an onboarding request: the applicant participant requests credentials in the Governance Authority providing
information about the organization and the participant's role in the data space (consumer or data/infrastructure/application provider). Credentials

 in the Governance Authority Tier1 Authentication provider through the Users&Roles component. are created After the credentials have been
, the onboarding component creates an onboarding request with the status IN PROGRESS.created and stored in Tier1 User Database

Applicant participant completes the onboarding request(1): the applicant participant logs in to the onboarding Frontend using the temporary
credentials and fills the onboarding request providing the and adding comments, if needed. Once all the required documents required documents
have been uploaded, the applicant can submit the request for review to the Governance Authority representatives.
Governance Authority representative reviews the onboarding request(1): when the onboarding request has been submitted, the governance
authority representative reviews it and decides:

to APPROVE the onboarding request and proceed to the credentials creations step.
to REQUEST A REVIEW to the participant applicant, possibly requiring additional documents (step 2)
to REJECT the onboarding request. In this case the onboarding process stops.

Security Attributes Registration: as soon as the onboarding request has been approved, the onboarding component saves the participant
identity attributes in the Security Attributes Provider component.
Keypair creation: once the onboarding request has been created, the applicant representative can start the credentials creation process inside
the participant agent. The applicant representatives generates a keypair and stores it in the participant agent.
Credential creation: the public key (whose keypair is safely stored inside the participant agent) is sent by the applicant representative to the
governance authority. Using the public key, the onboarding component triggers a credential creation through the identity provider component.
After the creation, the applicant representative can download the credential.
Credential installation: the participant applicant can install the generated credential inside the participant agent along with the previously
generated keypair (step 5).

(1) Note that implementing a notification system is necessary to inform relevant users when comments are added or the status of an
onboarding request changes, prompting them to take appropriate action. However, the development of such a notification system, including the
specification of notification channels (e.g., Email, Frontend Notifications, SMS, etc.), is beyond the scope of the MVP.

ACV Dynamic - BP 03B - Connect/map Organisation Local IDP (Directory)

he participant must federate the local identity provider to the Authentication provider module of the Simpl-Open AgentT .

This step is crucial as it ensures that the Simpl-Open Agent can accurately verify and manage existing users' identities. The new participant is responsible
for assigning users to their respective roles within the Simpl-Open Agent for their organisation. The federation can be configured immediately after the
participant agent is installed, without waiting for the full participant onboarding process to complete. Configuring the local IdP beforehand allows the
participant to define and manage its own roles, enabling their use as soon as the onboarding process lands in the participant agent for the keypar
generation/upload (see BP 03A).

This assignment ensures that each user has the appropriate access and permissions to perform their tasks effectively.

1.

2.
3.
4.

IdP Login and Federation Setup: the participant representative with administrative roles logs in to the SIMPL Identity Provider and uses the
provided UIs to configure the federation with the Local IdP. The Local IdP serves as the identity provider with a pre-configured authentication
mechanism, enabling organization users to log in to the organization's existing applications. In the federation setup the representative configures
all the endpoints, credentials, configuration and mappers that are needed to connect to the Local IdP and federate it.
Connect to identity provider: the participant representative checks that the federation has been configured correctly
Remediate issues: the participant representative fixes some configuration problems that may arise during the setup phase
Assign and Map User & Roles: the user with administrative roles can now list the list of federated users (*) and assign roles to users according
to the role they have to play inside the participant agent

ACV - Domain 2 - Publish and consume resources

To share the provider of the data, application or infrastructure offering needs to make offering available and findable for the interested consumers. To its
this end, the provider needs to describe its offering in the form of metadata (called Self-Description) and make it available in a . This central catalogue
catalogue needs to provide appropriate functionality for the consumer to find his desired data, application or infrastructure offerings. For the consumption
of the offerings are provided functionalities to negotiate a binding contract with validation of the access policy (control plane) as well as the technical
consumption, e.g., the file transfer for data or the triggering of infrastructure deployment in the case of infrastructure.

The static view diagram illustrates the structural organisation of components involved in the domain, segmented into four types of agents (Governance
Authority, Consumer, Data Provider and Infrastructure Provider) , showcasing the roles each plays in the domain.

, components highlighted in red are foreseen to be part of Simpl-Open but are not part of the MVP, while components highlighted in grey As per the legend
are external to Simpl-Open.

The red numbers on the diagram help to correlate APIs with their definition which can be found in the Interfaces section, while the green letters makes the
link with the User Interfaces which can be found in the same Interfaces section.

To keep the diagram lighter, following components (and their relations) have only been represented within the Data Provider agent but are in reality also
part of the typical deployment of an Infrastructure Provider agent:

Connector
Contract Manager Orchestrator
Contract Manager Backend
Signer Orchestrator
Signer Async Adapter
Signer Backed
VC Issuer
Wallet
SD Tooling
Catalogue Client Application
Schema Registry
Policy Template Datastore
Contract Template Datastore

Schema Management

The component represents the Metadata Description building block, enabling the Governance Authority to define the Schema Management
structure of self-descriptions. Using a UI or API, the Governance Authority can establish properties, data types, constraints, and controlled
vocabularies that apply across resources (datasets, applications, infrastructure). The resulting schema configurations are automatically
transformed into semantic files and managed within the Schema Registry, ensuring the Provider Node has access to the most current schema
standards for generating self-descriptions in compliance with governance protocols.

Schema Registry

The functions as a central repository and management interface for schemas created by the Governance Authority. These Schema Registry
schemas, represented as ontologies and structured schema definitions, are actively managed to provide consistent standards across resource
descriptions. Serving as an application component rather than a simple data storage element, the Schema Registry facilitates regular
synchronisation with the Provider Node, ensuring that providers always have access to the latest schema standards needed for creating
compliant self-descriptions
The Schema Registry is used by the catalogue client application to enable semantic consistency by defining and validating the terms used in self-
descriptions and search fields. The Search Client uses the schema to define the search fields for the advanced search. This automatic form
generation helps prevent ambiguous searches and ensures users can only search for terms recognised within the data space.

Catalogue

Operating on the Governance Authority node, the component functions as the central publication point for signed self-descriptions. It Catalogue
includes secure API functionalities for publishing, querying, and managing self-descriptions. After publication, the self-description becomes
accessible to potential consumers via the Catalogue’s API. The Catalogue also manages the status of self-descriptions and facilitates seamless
access to information and metadata stored in the system's databases.
When a search request is made via the , the Catalogue’s Search Engine processes the request, taking into account Catalogue Client Application
the filters and parameters provided by the Policy Filter Service and Adapter Component. This ensures that the search results returned to users
are both relevant and compliant with defined policies.
The Catalogue component also works closely with the Schema Registry to ensure semantic consistency across searches.
The Catalogue component contains:

 - The catalogue database is one or multiple databases that persist the published Self-Descriptions.Catalogue Database
- The search engine indexes the entries in the catalogue database and allow for an performant searchSearch Engine

 - The vocabulary datastore contains the loaded ontologies and schemas of the catalogue used for the semantic Vocabulary Datastore
validation
Management Service - The management service allows to perform several operation on the self-description, for instance the revocation
of a Self-Description.
Syntax Validation Service - The Syntax Validation Service checks the syntax of the Self-Description before publication

 - The Semantic Validation Service checks the semantic of the Self-Description before publication. In detail Semantic Validation Service
it performs both an validation of SHACL Constraints and checks if the Self-Description complies with the ontologies in the catalogue.

 - The Quality Rule Validation Service checks the quality of the Self-Description before publication. It Quality Rule Validation Service
checks if all mandatory quality rules are fulfilled and uses the recommended quality rules to calculate the quality score for the Self-
Description.

Query Mapper Adapter

The component functions as an intermediary, translating user-defined search parameters into a format compatible with Query Mapper Adapter
the Catalogue’s database query language. These translation capabilities allow users to perform complex searches without needing to know the
technical specifics of the database’s query language, making it easier for users to interact with the Catalogue in a secure and user-friendly
manner.

Policy Filter Service

The dynamically enforces access policies on search queries. It applies the access control rules defined within each self-Policy Filter service
description, filtering search results based on the user’s permissions.

This service is integrated in the Query Mapper Adapter component to embed policy-based filters into search queries before they are sent to the
Catalogue. This integration ensures that all queries reflect the necessary governance controls, restricting access to authorised users and ensuring
that sensitive information remains protected. In this way, the Policy Filter Service works as an invisible layer of security that ensures compliance
while providing authorised access to the appropriate search results.

Message Broker

Remark on Catalogue Deployments

In the current architecture view the catalogue is depicted as a single component, but yet a different schema is used for each type of resource
(data, application and infrastructure). The catalogue might thus be deployed multiple times (e.g.) for testing purposes. The way this is deployed
is subject to change. In the future the catalogues (data, infrastructure and application) may be kept in a single component deployment and can
be separated by the different schemas.

According to DataSpace Protocol (DSP) specification each implementation of a connector has to provide a local assets catalogue instance
providing all registered service offerings (asset) and usage contract offerings of this provider. Hence as a prerequisite to adding/updating a
resource this service offerings (assets) has first to be registered at the connector. There the contract negotiation id to start contract negotiation
will be created. This id is crucial for self description to provide any customer the link to start contract negotiation.

Certain processes (e.g. publishing to catalogue, provisioning the infrastructure resources) are designed to be asynchronous. The role of the Mess
 is to facilitate these asynchronous processes.age Broker

SD Tooling

Located on the Provider Node, the component enables providers to define self-descriptions for their resources by leveraging SD Tooling
schemas from the Schema Registry. This ensures each self-description adheres to predefined properties and constraints. The SD Tooling
Component supports both UI and API methods, providing flexibility to providers. It works in tandem with the Policy Creator and Contract Template
components, allowing providers to incorporate policy and contract terms directly into self-descriptions.
The SD Tooling component contains:

SD Manager - The SD Manager allows the user to manage his published Self-Description, for instance triggers the revocation
SD Creation Tool - The SD Creation Tool supports the provider in the creation of the Self-Description of their resources, by providing a
generated frontend from the schema with the correct property fields.
Policy Creator - The component enables the creation and management of Access and Usage Policies for resources. Policy Creator
Access Policies determine the accessibility of a resource, while Usage Policies outline the permissible uses and monitor the extent of
usage to support billing based on consumption. These policies are serialised into a standardised format to ensure consistent application
and interpretation across components. Integrated into the Self-Description, they contribute to a governed, comprehensive resource
description.
Contract Template Editor - The Contract Template Editor enables the creation and the customisation of contract templates linked to
resources in self-descriptions. Theses templates, once created, are stored in the Contract Template Datastore.
Validation BE - The Validation BE performs syntax validation for the Self-Description on the provider side before they are published to
the catalogue

Policy Template Datastore

The datastore contains templates of the policies that can be used as a blueprint to describe the access and usage policies for a resource

Contract Template Datastore

The stores Contract Templates to ensure consistent application of contract terms, which are later accessible to Contract Template Datastore
consumers during resource negotiation and access stages.

Signer Service

The component manages the digital signing of self-descriptions, ensuring their authenticity and integrity. Upon completion, the Signer Service
self-description is signed using the provider’s private key to verify identity and prevent tampering. Once signed, the self-description is ready for
distribution and is published to the relevant Catalogue component for broader access. This service is crucial for establishing trust between
providers and consumers.
The Signer Service component provides cryptographic signing capabilities for contracts, ensuring non-repudiation and authenticity. This
component validates the identity and integrity of each contract, instilling confidence in the security of agreements.

Catalogue Client Application

The is the primary interface through which users interact with the Catalogue. It presents search fields and options Catalogue Client Application
to users, which in case of advanced search are defined by the schema.
The then sends the policy-filtered queries to the Catalogue Component via the Adapter Component. After Catalogue Client Application
receiving results from the Catalogue, it presents them in a structured format, ensuring that users can easily navigate and interpret the returned
self-descriptions and metadata.
The component contains:Catalogue Client Application

Catalogue Schema Backend - This Component transforms the schema definition automatically to front end files that are used to
generate a custom made frontend to define the Self-Description
Quick Search UI - This UI allows the consumer/provider to perform a Quick Search on the respective Catalogue
Advanced UI - This UI allows the consumer/provider to perform a Advanced Search on the respective Catalogue

Contract Negotiation Adapter

The component is requesting an Offering from the Provider. This Offering is returned with the Offering ID and Contract Negotiation Adapter
respective usage & access policies.
Once the user accepts the conditions (usage & access polices) the is building the request to start the Contract Contract Negotiation Adapter
Negotiation on the and retrieve the Status of the Contract Negotiation.Connector

Connector

The component registers each resource (dataset, application, or infrastructure) as an asset within the data space, associating policies Connector
and contracts with each asset. It also provides controlled endpoints for each resource, playing an intermediary role in the contract negotiation
process by leveraging the policies and contract templates associated with the resource. This enables the management of contractual
relationships between providers and consumers. The connector functions also as a gateway for secure data exchange and ensures that policies
are enforced during data consumption. It is responsible for enforcing security protocols and managing policies that govern access to the data
(simple dataset or bundle).
The component is implementing the data space protocol and contains the following sub-components:Connector

Control Plane - The control plane of the connector acts as a state machine, overseeing the various states and transitions specified in
 ensures that all agreements between the data provider and consumer are finalised before any data the Contract Negotiation Protocol. It

transactions take place. The Control Plane at the Provider side includes the Local Assets Catalogue component. An Asset is the primary
building block for resource sharing, it represents any data or API endpoint that can be shared. Assets are descriptors that are loaded into
EDC via its Management API during the registration phase performed before uploading a resource to the catalogue. In case of a bundle,
it is the URL that triggers the deployment script which will deploy the requested infrastructure and application.
The control plane to perform its functionalities interacts with the Management API, the Protocol API and the Policy Engine.

Data Plane - The Data Plane enables the data exchange based on the transfer protocol which will only take place in case the contract
negotiation protocol has successfully established a contract. This second part is controlled by the control plane and performed by the
data plane. The data plane component, which consists of an extension of the connector, manages the actual data exchange, ensuring
that data flows securely from the provider's source to the consumer's specified destination, aligning with the agreed-upon terms of the
contract. In the scenario of a bundled infrastructure, data and application, the role of the data plane component is performed by the
infrastructure orchestrator which is responsible for retrieving the deployment script ID from the Asset of the resource to be used and
triggering the execution of the script on the infrastructure provider. Once the provider completes the deployment, it will return the access
details for the newly created environment. These details will then be forwarded to the user, who will use the provided information to
access the infrastructure directly.

 The Management API is a RESTful interface for client applications to interact with the control plane.Management API -
 - The Dataspace protocol API is a RESTful API interface that is used for the contract negotiation protocol.Dataspace protocol API

 - The Policy Engine is crucial in making decisions based on the policies tied to the requested resource. The policy engine Policy Engine
is able to perform this operation because the policies are registered and linked to the registered assets (Assets component in the Control
Plane). This allows the policies to be retrieved at this moment and the necessary checks to be carried out. This component evaluates
whether all policy requirements are met, and if they are not, they can halt the process to prevent unauthorized access.

- The triggering extension will send the DeploymentScriptID and the email address of the consumer, to the Triggering Extension
Infrastructure Triggering Module, at the time of finalising a contract agreement. This will result into provisioning of the infrastructure
resources and deployment of the applications on that resource.

- Can transfer datasets from the S3 Object Storage of the Data Provider, to the S3 Object Storage of the S3 Object Storage Extension
Data Consumer, at the time of finalising a Data Transfer Contract.

Contract Manager (Orchestrator and Backend)

The Contract Manager coordinates with the Verifiable Credentials Issuer (VC Issuer) Component, Signer Component, and Wallet
Component to integrate contract validation, issuance, and storage functionalities. It also stores contracts for billing and record-keeping purposes,
centralising key contract-related data.

MVP Note: For the Minimum Viable Product (MVP), interactions with the VC Issuer Component, Signer Component, and Wallet Component are
streamlined through a single stub interface. Additionally, contract storage and Wallet emulation are consolidated into a single database,
simplifying the initial implementation.

Verifiable Credentials Issuer (VC Issuer)

The VC Issuer component securely issues and manages verifiable credentials, providing transparent and reliable validation of usage contracts. It
relies on the Signer component to apply cryptographic signatures to contracts, ensuring data integrity.
Signed usage contracts are stored in the Wallet component for secure access, facilitating a robust and trustworthy credential management
process.

Wallet

The Wallet component as a secure digital repository for storing, managing, and presenting verifiable credentials (VCs). This "digital wallet" serves
enables providers to securely manage and share their credentials, ensuring compliance with contractual requirements while facilitating efficient
access to validated information.

Triggering Module

The Triggering Module component is responsible for adding, managing and executing the deployment scripts, and finally sharing the access
data. The triggering module is made of three submodules:

Script Storage Management submodule (Accessible via the API and the Infrastructure Deployment Script Management UI) :
That is responsible for adding and managing the deployment scripts. It contains the following functions:

Add Script: Enables users to add deployment scripts to the local repository and database, ensuring the scripts are accessible
for future provisioning tasks. This function also preforms security checks to prevent uploading of malicious scripts and files.
Remove/Invalidate Script: Manages the removal or invalidation of outdated scripts from the repository and database.

Script Execution submodule: When an API call requests the triggering of the deployment script, this module initiates the execution
process. Its functions are:

Retrieve Deployment Script: Retrieves deployment scripts from the repository, allowing the Infrastructure Provisioner to
execute the necessary steps for the resource provisioning and software deployment.
Validate Deployment Script: Generates and compares a hash of the retrieved script from the repository to the hash that was
stored in the database at the time of storing the script, to check for integrity and authenticity, confirming the script is secure and
unaltered.
Trigger Execution: Communicates with the Infrastructure Provisioner via a message broker to initiate the provisioning process.

Access Management submodule: When the provisioning is done, shares the access information such as endpoints and credentials
with the consumer:

Retrieve and Share Access Data: Obtains access credentials and details from the Infrastructure Provisioner, making them
available for distribution to the necessary stakeholders.

The exposes its functionality via an API, enabling other SIMPL-Open Agent modules to interact with it as needed. After Triggering Module
triggering the execution of the deployment script, the triggering module listens for provisioning completion events from the Infrastructure
Provisioner to confirm successful deployment and share the access data.

Infrastructure Provisioner

The Infrastructure Provisioner component is an asynchronous service that orchestrates the actual provisioning of infrastructure resources and
potential deployment of the applications and datasets (in case they are a part of the deployment script). Upon receiving a deployment trigger from
the Triggering Module, this component follows several steps to ensure resources are provisioned, configured, and made accessible. This module
contains two submodules for provisioning and decommissioning:

1.

a.

b.

c.
d.

2.

3.

a.

b.

c.
4.

a.

b.

c.

a.

b.

c.
d.

Provisioning sub-component: Provisions the infrastructure resources, creates/grants access to them, and runs post-configuration
processes to set policies and to deploy applications.

Execute Deployment Script: Runs the deployment script received from the Triggering Module, provisioning resources such as
compute instances, storage, or other assets.
Set Policies: Defines infrastructure specific usage and access policies to govern resource usage, aligning with predefined rules
on the deployment script to control who can access the provisioned infrastructure resource.
Create Access Information: Generates and provides access credentials and endpoints, allowing authorized users to interact
with the infrastructure.
Post Configuration: Can deploy applications and load datasets on the provisioned infrastructure resource.
Share Access Data: Returns the generated access information back to the Triggering Module / Access Management, so the
information can be shared with the consumer.

Decommissioning sub-component: It will decommission the infrastructure asset based on the criteria set by the business (e.g., end
date of the contract.) The two main functions are:

Pre-decommissioning: Initiates the pre-set decommissioning configurations such as notifying the consumer and making
snapshots/backups.
Access Revocation: Revokes user access, if applicable, and triggers the final termination process.

This is not directly exposed via the public API but through the processes of the triggering module.infrastructure provisioner

Infrastructure Provider Storage

The component houses both aInfrastructure Provider Storage Database and a Repository to store deployment scripts. The Storage
component can supports versioning, audit trails, and controlled access, thus facilitating compliance and security in deployment operations.

Following sub-sections contain dynamic views that each present how a subset of above-described application components are used to satisfy different
(parts of) business processes:

The first part is that the provider needs to describe his resource using a predefined schema that when tailored to the resource at hand becomes a
 Next the provider need to make this for potential search. This process is described in detail in ACV self-description. self-description (SD) available

Dynamic - BP 05A - Add or Update Resource (Publish) on Catalogue. In simple terms, this publication process consists of:
The provider describes his offering using the SD Tooling, how the description should look like is defined in the schema of the self-
description
The provider registers the SD as an asset in the connector. The asset is composed by a present in the SD, only subset of the metadata
the one that will be necessary afterwards during the consumption
The provider signs the Self-Description with his credentials to that he is the owner and to make the Self-Description -proofproof tamper
Finally, the provider publishes the Self-Description to the central catalogue on the Governance Authority Node so the consumer can
search for it. The Governance Authority checks automatically if the Self-Description is correct according to the syntax, semantics and
quality.

To update a Self-Description consist of at first revoking the old version of the Self-Description and publishing a new version, for detail see ACV
Dynamic - BP 05A - Add or Update Resource (Publish) on Catalogue.
The third process is that the consumer searches the catalogue for dataset, application or infrastructure offering. The consumer defines the search
terms in the search client app and the catalogue on the governance authority agent executes the search in the catalogue. This is described in
detail in ACV Dynamic - BP 06 - Search on Catalogue (Infrastructure, Data, Application). :The process consists of

The Consumer (or provider) uses the search client app to write his search terms. We allow for two different ways of searching quick
search or advanced search.
The consumer calls a service in the Query Mapper Adapter on the Governance Authority. This service maps the search terms onto
executable queries for the catalogue and also ensures that the consumer can only see the offerings that allow it by enforcing the policy.
The query is executed by the catalogue itself and the results are returned to the consumer (provider).

The fourth part consists of the consumption which is declined in 3 different resource consumptions: data direct download, Infrastructure
consumption, and data consumption through an application (also called bundle for the MVP scope):

3a. The first type of consumption is the direct consumption of Dataset ACV Dynamic - BP 09A - Consumer consumes a data resource from the
provider. The consumer has found the offering that he wants from the central catalogue and next he wants to consume the data. this process in
simple terms consists of three sub-processes:

The consumer uses the connector to establish a contract with the provider (described in detail in ACV Dynamic - BP 07A - Establish a
usage contract agreement)
The control planes perform the contract negotiation between the connector of the consumer and provider (also includes the enforcement
of the policies)
The data plane is used to transfer the data from provider to consumer

3b. The second consumption is the infrastructure consumption ACV Dynamic - BP 08 - Consumers select and use an Infrastructure Catalogue
Resource from the Infrastructure Provider. The consumer finds the offering in the central catalogue and then performs the request for its
consumption.

The consumer uses the connector to establish a contract with the provider (described in detail in ACV Dynamic - BP 07A - Establish a
usage contract agreement)
The control planes perform the contract negotiation between the of the consumer and provider. Tconnectors he control plan also
includes the enforcement of the policies.
The infrastructure provider retrieves, validates and triggers the deployment script of the infrastructure offering
The infrastructure provider retrieves the and shares them with the consumer access data for the infrastructural resource

3c. Besides the direct consumption of a dataset we also want to support the data consumption through a processing service over an application
ACV Dynamic - BP 09B - Consumer receives data processing service over a dataset via an Application. The steps are a bit more complex due to
the need for infrastructure to host the application and dataset:

a.

b.
c.

d.

The uses the connector to establish a contract with the provider (described in detail in ACV Dynamic - BP 07A - Establish a usage
contract agreement)
The control plane is negotiated between the connector of the consumer and provider (also includes the enforcement of the policies)
An infrastructure is provisioned for the consumption (ACV Dynamic - BP 08 - Consumers select and use an Infrastructure Catalogue
Resource from the Infrastructure Provider), and the dataset and application are installed on that infrastructure
The consumer gets (restricted) access to this infrastructure

ACV Dynamic - BP 05A - Add or Update Resource (Publish) on Catalogue

Define and Publish Self-Description

This process outlines how a self-description can be defined and subsequently published in the Catalogue. Certain fields within the self-description link to
other resources, which therefore need to be created beforehand. For instance, an infrastructure offering requires a deployment script to be added in
advance so that it can be referenced within the self-description.

1.

2.

3.

4.

5.

6.

7.

8.

 : Schema Synchronisation The SD Tooling component on the Provider side initiates a request for schema definitions from its local Schema
Registry, which is kept in sync with the one on the Governance Authority node. This ensures consistent access and alignment across schema
participants, supporting unified self-description formats in the data space. The retrieved schema definitions are stored in a local Schema
Datastore on the Provider’s end, ensuring quick access and version control.

 : Create Self-Description Providers can create a new self-description or modify an existing one through the User Interface. This interface allows
them to fill in necessary fields or use a previously stored self-description template.
Syntax Validation : The Syntax Validation component within SD Tooling checks the initial structure of the self-description to confirm it meets the
required format. While primarily focusing on the form of the self-description, this step also checks for basic schema compliance. If any issues are
found, the provider is prompted to make corrections before proceeding.
Registering Self-Description : Following syntax validation, the self-description is directed to the Connector component, where it is registered as
an asset. This registration is critical for linking the self-description to a specific connector instance, enabling controlled access for consumption by
the consumer.
Signing and Publication : The Signing/Publication Service manages the integrity and authenticity of the self-description. It signs the document
using the Provider’s private key to prevent tampering, and then publishes the signed self-description to the Catalogue. A copy of the signed self-
description is also stored locally in the Provider’s Wallet for record-keeping purposes. The Wallet maintains a history of signed copies, with any
necessary purge or retention policies applied to manage storage effectively. These policies should specify when older records are archived or
deleted to optimise space and meet governance standards.
Semantic Validation : After publication, the Catalogue on the governance node initiates Semantic Validation. This step checks that the self-
description adheres to the data space’s vocabularies and ontology standards, ensuring semantic consistency.
Quality Check : The Catalogue also performs a Quality Rules check to verify that the self-description meets all mandatory . If quality standards
any semantic issues are identified, . If the self-description passes all check successfully, the the End User is notified to address specific violations
End User receives a confirmation notification, indicating that the resource is now ready for publication within the data space.
Database Storage : Upon passing all validations, the self-description is stored in the Database along with its associated metadata, Catalogue’s
making it discoverable and accessible to other participants in the data space.

Retrieve SD Metadata

This process illustrates how the metadata (such as status) of a self-description (SD) can be retrieved by a Provider. The different possible for a statuses
self-description are outlined in the Gaia-X Federation Services documentation (40.3 Product Constraints) .here

https://gaia-x.gitlab.io/technical-committee/federation-services/federation-service-specifications/L05_FC_CCF/fc_ccf/

1.

2.

3.

4.

:Initiate Metadata Request The Provider initiates a request to retrieve metadata associated with a specific self-description. This request includes
the unique identifier of the desired self-description and is sent to the .Catalogue on the Governance Authority Node
Query Metadata: Upon receiving the request, the Governance Authority Node processes it by querying its to locate the Metadata Database
requested metadata. This step ensures that the metadata aligns with the unique identifier provided.
Return Metadata: After locating the requested metadata, the prepare a response containing the metadata details. This ensures the Catalogue
requested information is available for consumption.
Display to User: The SD Manager receives the metadata and presents it to the Provider's end user, allowing them to view details like the status
of the self-description.

Retrieve Full Self-Description

This sequence describes the steps taken by a provider to retrieve a complete self-description (SD) for a resource.

1.

2.

3.

4.

5.

Initiate SD Request: The process begins with the provider using the to initiate a request for a specific self-description by sending its SD Manager
unique identifier (SD ID) to the Management Service hosted on the Governance Authority Node.
Query Self-Descriptions: processing, the queries the to retrieve the detailed self-After Management Service Self-Description Database
description associated with the given SD ID.
Respond with Self-Description: Once the full self-description is retrieved, it is sent back to the provider through the component. Response SD
This self-description includes all necessary metadata and resource information.
Display to User: The SD Manager on the provider node displays the retrieved self-description to the provider’s end-user through its User
Interface.
Optional Storage in Wallet: Optionally, the retrieved self-description can be stored in the provider’s for local record-keeping or offline Wallet
access.

Revoke SD

This process outlines how a provider can revoke a Self-Description (SD) in the system, with po Pssible statuses detailed in the (Gaia-X documentation 40.3
roduct Constraints).

https://gaia-x.gitlab.io/technical-committee/federation-services/federation-service-specifications/L05_FC_CCF/fc_ccf/

1.

2.
3.

Initiate Status Change: The provider, through the on the Provider Node, initiates a request to revoke a specific SD by sending the SD Manager
SD ID to the on the .Catalogue Governance Authority Node
Revoke SD: system then revokes the SD in the database to reflect the new status for the Self-Description.The Catalogue
Response and Display: The confirms the status update by returning the new status to the . If the user Management Service SD Manager
interface (UI) is used, the updated status is displayed to the provider end user.

ACV Dynamic - BP 06 - Search on Catalogue (Infrastructure, Data, Application)

The process describes the end user searching for a resource in the catalogue. The end user can either use the quick search or the advanced search. For
the advanced search, it is a prerequisite that the local schema registry of the provider/consumer is synced manually with the central schema registry of the

 The search request is sent to the catalogue. The query mapper translates the query input to the related database query language governance authority.
and adds the filters based on the access policies related to the user performing the request. The search engine executes the search queries and returns

 The result is then displayed in the end User's search Client.the results.

1.

2.

3.

4.

User Search Request Initiation
The user initiates a search request through the . Here, the user enters the search criteria, which could include keywords, filters, or Search Client
other parameters relevant to the desired resources (e.g., datasets or applications).
For the Advanced Search the form of the search is defined by the schema in the .Schema Registry

Policy Filter Service
The validated search request is to the . This service checks the user’s access rights based on the policies defined forwarded Policy Filter Service
in the .Policy Creator Component
By applying the relevant , the Policy Filter Service modifies the search query to restrict results to only those resources the user is authorised to
view.

Query Translation by Adapter Component
The Query Mapper Adapter Component receives the policy-filtered search request and translates it into a query language that aligns with the
Catalogue’s database structure.
This step includes mapping the search parameters to the Catalogue’s internal query schema and embedding any access restrictions set by the
Policy Filter Service directly into the query.

Catalogue Component Query Execution
The ComponentCatalogue receives the translated and filtered query from the Adapter. Within the Catalogue, the Search Engine processes the
query by scanning its database, which houses all signed self-descriptions, metadata, and associated policies.
The Catalogue ensures that each self-description or metadata entry returned aligns with the access policies, ensuring compliance with data

4.

5.

1.

2.

3.

governance standards.

Result Return to Search Client
After processing the query, the sends the authorised through the , which Catalogue Component results back Adapter Component re-formats
them for the Search Client’s display needs. The Search Client then presents these results to the user in a structured format, along with relevant
metadata to provide a comprehensive view of each item.

ACV Dynamic - BP 07A - Establish a usage contract agreement

This view for the " " process captures the flow of interactions between various components involved in dynamic Establish Usage Contract Agreement
initiating, negotiating, validating, and finalising a contract agreement between a Consumer and Provider. The view is structured into four primary sections re
presenting different roles: Consumer, Connector, Provider, and Governance Authority.

Preconditions:

 The Consumer must have discovered and selected the desired resource from the Dataspace's Catalogue, Consumer Discovery and Decision:
reviewed the associated terms and conditions within the Usage Contract template (Business Process - 06), and made the decision to consume
the resource (Business Processes - 08, 09A, and 09B).
No Existing Contract: There must not be an existing Usage Contract in place that covers the specific resource and terms of the current
consumption request.

Initiating Contract Negotiation (Consumer to Connector): The Consumer initiates a contract negotiation through the Connector’s control plane
by creating a " " This is sent to the Provider’s Connector, initiating the contract establishment process.Contract Offer Request. request

Contract Offer Creation and Validation (Provider): Upon receiving the Contract Offer Request, the Provider’s Connector a "Contract generates
Offer" and sends it back to the Consumer Connector for . The Consumer then reviews and validates this offer to ensure it meets their validation
requirements.

Agreement Formation and Validation (Bidirectional Communication): If the Consumer accepts the offer, the Consumer Connector initiates
the creation of a "Contract Agreement." This is validated by both the Consumer and Provider’s Connectors to ensure mutual agreement

3.

4.

5.

 Once validated, both parties confirm the contract through Verifiable Credentials.compliance.

Verification and Issue of Usage Contract VC: The Provider invokes the VC Issuer to issue Verifiable Credential (VC) for the Usage Contract
Agreement. This credential is signed by a signer service subsequently returned and stored securely within the VC storage of the Wallet for
regulated access to usage terms. This is then repeated on the Consumers side to issue, sign, and securely store VC for the Usage Contract
Agreement on the customer’s side.

Persisting Agreement (Wallet & Storage): After the VC Usage Contract is signed and securely in the digital wallets of both the consumer stored
and the provider, a copy of the contract (in a format to be determined, potentially a third VC or a traditional record) will be stored by the provider
for future reference, such as billing and auditing purposes.

ACV Dynamic - BP 08 - Consumers select and use an Infrastructure Catalogue Resource from the Infrastructure
Provider

The dynamic view diagram illustrates the orchestrated interactions required to provision infrastructure resources, and to deploy applications on the
provisioned infrastructure asset. This view focuses on the coordinated roles of the Triggering Module, Broker, and Storage Infrastructure Provisioner.

Preconditions:

Infrastructure of the data space governance authority had been set up (agent deployed);
Infrastructure of the infrastructure provider had been set up (agent deployed);
Infrastructure service offering(s) had been listed on the catalogue (and therefore registered as connector assets), as per BP 05A.
Infrastructure Consumer has been onboarded to the data space (as per BPs 03A and 03B);
Infrastructure Consumer is authenticated and has been authorised;
Main Infrastructure instance of the infrastructure consumer had been set up (agent deployed).

Triggering and Infrastructure Provisioner Modules

This outlines how the deployment script can be added, removed, invalidated and triggered, using the Triggering and Infrastructure Provisioner process
Modules.

1.

2.

3.

4.

Triggering Module

API: The request to the triggering module API w be received either from the " " when a deployment script is being added ould script management UI
or is being modified, or from other components of SIMPL such as connector extensions (at the time of contracting between two connectors, to
send the Deployment Script ID, and other relevant information such as the Consumer Email, and trigger the execution of deployment script, which

). provisions the infrastructure resources and deploys apps asynchronously

Script Storage Management Module: functionality of the backend, accessible via the API which also is available via the UI that relies on is the
the API. Using this functionality, service providers (infrastructure, app or data) can store Deployment Scripts and receive a unique identifier
(DeploymentScriptID) assigned to that specific script. At the time of adding the scripts, they are being validated to not contain malicious code.
Script are added to a repository and a database at the same time, to have a mechanism to check their integrity in the future and at the time of
retrieval.
Add Script

Generate Unique ID: Assigns a unique identifier () to each script for tracking purposes.DeploymentScriptID
Validate Script: Ensures the script is free of malicious code. Scripts failing this check are rejected.
Hash the Script: Generates a hash value for the script, which is stored in the database to enable future integrity checks.
Store Script in DB: Saves the script’s metadata and hash securely in the , with protections against SQL injection attacks.database
Store Script in Repo: Stores the actual script file in a local repository for retrieval during execution.

Remove Script

Validate Removal Criteria: predefined business rules, such as backup creation, before invalidating a script.Enforces
Flag as Invalid in DB: Updates the script's validity status in the database to indicate it is no longer active.
Remove from Repo: Deletes the script file from the repository, though its metadata remains in the database for audit or business
purposes.

Script Execution Module: The module is responsible for handling deployment script retrieval, validation, and execution requests.

Retrieve Deployment Script: When a request containing the is received, the module retrieves the script from DeploymentScriptID
the repository.
Validate Deployment Script: Checks the integrity of the retrieved script by generating a new hash and comparing it with the hash
stored in the database. Integrity failures trigger errors, preventing execution.
Recognize Post-Configuration Script: If the Crossplane configuration file contains a Cloud-init configuration section containing post
provisioning configurations, it will be recognize (as described in the next steps, since it's required by d, to be encoded to base64
Crossplane), after proper modifications (e.g., adding a public key or password that's generated by the access management module, as
described in step 4. Access Management Module).
Hash / Encode: Encodes the Cloud-init configuration (if exists) using Base 64. Hashes the randomly generated password by the Access
Management Module (if exists) using SHA 256.
Modify Deployment Script: Replaces the simple-text Cloud-init configuration by the base64 encoded version of it, which contains the
added information such as the encrypted password or the public key.
Trigger Deployment Script Execution: Sends the deployment script to the via the Infrastructure Provisioner Module Message

, ensuring asynchronous communication for scalability.Broker

 Access Management Module:

Generate Password: When a request containing the is received, the module retrieves the script from the DeploymentScriptID
repository.
Retrieve Access Data: Checks the integrity of the retrieved script by generating a new hash and comparing it with the hash stored in
the database. Integrity failures trigger errors, preventing execution.
Share Access Data: Shares the endpoints, credentials and any information relevant for the provisioned instance (or deployed
applications). For the MVP it relies on the SMTP emailer, and will be replaced by wallet solutions after the MVP.
SMTP Emailer: Shares the access information with the Consumer, using the email address which was received during the triggering
process.

Message Broker: The Message Broker facilitates communication between the Script Execution Module and the Infrastructure Provisioner Module.

Infrastructure Provisioner Module: The module is in charge of provisioning and decommissioning of the infrastructure resources and completing post-
provisioning configuration tasks. Key steps include:

Provisioning

Validate Deployment Script: Checks the script for syntax correctness and interpretability to avoid execution errors.
Execute Deployment Script: Provisions infrastructure resources based on the script’s configuration.
Post Configuration: Completes additional tasks, such as setting policies, deploying applications, mounting or attaching storages and
loading datasets as specified on the post configuration (Cloud-init) section of the deployment script.

Share Access Data: Shares access information (such as endpoints) to the , via the Access Management Module Message Broker.

Decommissioning

Run pre-decommissioning tasks: Such as making a snapshot of the resources, depending on the business requirements (yet
to be clarified by Business).
Decommission: Terminate/destroy the resources.

Storage Solutions: Consists of the , and ensuring secure storage and retrieval of deployment scripts and Database Git-Based Repository Wallet
passwords.

Database: Stores metadata and hashes for each script to facilitate integrity verification.
Repository: the actual deployment scripts for retrieval during provisioning.Hosts
Wallet: If a random password generation is necessary for the instance that is going to be provisioned, this password will be
temporarily stored on the wallet (Hashicorp vault, in this case), until the provisioning is finalized and the password is going to be
communicated to the consumer, and to be deleted from the wallet.

ACV Dynamic - BP 09A - Consumer consumes a data resource from the provider

The Data Provider is open to offering straightforward access to the dataset for the consumer. This access can be facilitated through a , direct download
making the process simple and efficient. To ensure proper governance, a formal contract will be established between both parties. Since the data is
downloaded, Simpl no longer has control over its usage, and therefore this contract will define and enforce legally binding usage policies as well as access

 These measures will provide clarity and security for both the Data Provider and the consumer, safeguarding proper usage of the data.policie.

:Preconditions

Data Provider has registered the resource at the Connector;
Data Provider has created the SD for the resource (meta data description) and uploaded the SD to the data catalogue;
Consumer has logged in through their agent;
Consumer found the needed dataset using the searching capabilities on the Data Catalogue;
If the contract doesn't exist, Consumer and Provider must establish a Contract on the requested resource (BP7 - see relative architecture for
further details);
Consumer has an available and compatible storage.

:Assumptions for the MVP

The existence of the contract is not checked;

The view shows the dynamic application view of consuming a data resource by directly being given access to the the dataset. It outlines the key functional
components involved in the process of consuming a data resource.

The consumer initiates a request for the resource previously found in the catalogue, for which a contract has already been established. This request is sent
to the provider through the connector. Upon receiving the request, the provider to ensure that has the necessary verifies the policies the consumer
permissions to perform the requested action. The policies that are checked are only those that can technically be enforced. For all others, since the
dataset is downloaded, the contract enforces the legally binding usage policies. Once the policies are confirmed, the transaction takes place between the
two data orchestrator components, which, for the MVP, will be implemented as extensions of the EDC connector. These orchestrator components handle
the interface between the connector and the actual source on the provider side and sink on the consumer side of the data.

This section is only describing the capabilities falling behind the scope of the MVP (December 2024) and will be enhanced at a later
time. In particular it includes only the direct data dowload capability for data sharing.

1.

2.

3.

4.

5.

6.

7.

Dataset Selection by the Consumer:

The process begins in the on the consumer side, where the consumer selects a dataset of interest. This Catalogue Client Application
action initiates a message, which is sent to the . "Request Consumption of Data Asset" Contract Negotiation Adapter
This message signals the consumer’s intent to access the resource and moves the negotiation process forward.

Creation of Request Bundle:

The takes the consumer’s request and compiles a . Contract Negotiation Adapter Request Bundle
This bundle includes information about the selected dataset and any initial parameters needed to facilitate negotiation. It is forwarded to
the consumer’s for further processing. Connector (Control Plane)

Requesting an Offering from the Provider:

The consumer’s sends a message to the provider’s . Connector (Control Plane) Request Offering Connector (Control Plane)
This step involves querying the provider’s system to locate the requested dataset and determine its availability.

Asset Validation by the Provider’s Connector:

The provider’s checks the for the requested dataset: Connector (Control Plane) Asset Catalogue
If the dataset is not found, the provider responds with a . This message is propagated back Resource Not Found Message
through the consumer’s and to notify the consumer, effectively halting the process. Connector Contract Negotiation Adapter
If the dataset is found, the workflow transitions into the contract negotiation phase.

Contract Negotiation Between Connectors:

Once the dataset is validated, the consumer and provider’s begin negotiating the terms of usage. Connectors (Control Planes)
This includes setting access conditions, pricing, compliance requirements, and obligations. The outcome of this step is a draft contract
that must undergo further validation.

Policy Evaluation on the Provider’s Side:

The draft contract is sent to the provider’s for evaluation against governance and compliance rules. Policy Engine
If the policy check fails, the sends a notification back to the consumer (via the and Policy Engine Connector Control Plane Con

) explaining the violation. The process halts here unless the consumer modifies the request to comply.tract Negotiation Adapter
If the policy check succeeds, the approves the contract, and the workflow proceeds to finalisation. Policy Engine

Notification of Policy Check Results:

The results of the policy evaluation (either success or failure) are sent back to the consumer’s . Connector (Control Plane)
In case of failure, the notifies the consumer, providing details about the violation. Contract Negotiation Adapter

7.

8.

9.

10.

If the policy check is successful, the contract is finalised and marked as complete.
Finalisation of Contract Agreement:

Once approved, the contract agreement is formalised within the of both the consumer and provider connectors. Control Plane
At this point, both parties have a binding agreement that governs the terms for the upcoming data transfer.

Initiation of File Transfer Request:

With the contract in place, the consumer’s sends a message to the provider’s Data Plane Extension for S3 Request File Transfer Data
.Plane Extension for S3

This request includes the as a reference, ensuring that the data transfer adheres to the agreed terms. contract agreement ID
Processing the File Transfer:

The provider’s verifies the file transfer request using the contract ID and cross-checks it against the agreed Data Plane Extension for S3
terms.
Once validated, the dataset is securely transferred to the consumer, completing the process.

ACV Dynamic - BP 09B - Consumer receives data processing service over a dataset via an Application

The consumer seeks to perform actions such as visualization or processing on a dataset owned by a data provider but does not have direct access to the
data itself. Instead, the consumer selects and enters into a contract for an offering from the data provider, which includes the provisioning of an
infrastructure resource. An application is then deployed on this infrastructure, enabling the necessary processing of the dataset. Access is provided
exclusively through a direct link to the application, ensuring that the consumer cannot directly access the data. As part of the contractual agreement, the
consumer is prohibited from attempting to access the data in any way.

:Preconditions

Data Provider has registered the resource at the Conenctor;
Data Provider has created the SD for the resource (metadata description) and uploaded the SD to the data catalogue;
Consumer has logged in through their agent;
Consumer found the needed resource using the searching capabilities on the Data Catalogue and selected the bundle of dataset, application and
infrastructure associated with the dataset.
If the contract doesn't exist, Consumer and Provider must establish a Contract on the requested resource (BP7) (see relative architecture for
further details);

The view shows the dynamic application view of consuming a bundle resource (dataset, application and infrastructure bundled together) by being given
access to the provisioned node where the bundle is deployed. It outlines the key functional components involved in the process of consuming the resource.

In this scenario, we make sure that the consumer gains access only to the application, without direct access to the dataset itself. When the consumer
selects and contracts a data processing service offering after the contracting is done, the infrastructure resource provisioning and the deployment of the
application over the infrastructure instance will take place in the background, and the Consumer will in the end receive the access data and credentials
only to the deployed application. The access to the application is not depicted in this scenario.

The components coloured in grey are related to the BP07 (Contract Manager) as well as BP06 (Search) and they are mainly referring to the preconditions.

The diagram represents the action performed to trigger the Bp which consists in using the endpoint, with the needed parameters, contained in the selected
description, the user can initiate the contract negotiation process

The diagram also shows the flow how the consumer is requesting a bundled resource via a data provider to the infrastructure provider and receives the
respective access. The consumer will request the offering via the Catalogue Client UI, based on a previously identified search result. The Contract
Negotiation Adapter is handling the request from the consumer, filtering for the requested asset on the provider's catalogue and return the offering along
with the respective usage and access policies. The user is then accepting those and at the same time start the contract negotiation. The contract
negotiation adapter is building the request for the connector. After finalising the contract negotiation, the infra structure deployment is triggered. Once this
step is completed, the access information is passed to the user,

1.

2.

3.

4.

5.

6.

7.

Resource Selection:

The on the Consumer side initiates a request for consuming a bundled resource (dataset, application, Catalogue Client Application
and infrastructure) by selecting it from a search result. This request is sent to the to begin the process.Contract Negotiation Adapter

Request Offering:

The processes the Consumer's request by forwarding it to the on the Data Contract Negotiation Adapter Connector (Control Plane)
Provider’s side.
The checks the requested resource against its :Connector Asset Catalogue

If the asset is , a "Resource Not Found" message is sent back to the Consumer.not found
If the asset , the Connector retrieves the associated offering details, including usage and access policies, and returns is found
them to the Consumer for review.

Policy Agreement:

The Consumer, using the , reviews the retrieved offering details.Catalogue Client Application
Upon agreeing to the usage and access policies, the Consumer initiates a contract negotiation via the .Contract Negotiation Adapter

Contract Negotiation Request:

The composes a contract negotiation request and sends it to the of the Contract Negotiation Adapter Connector (Control Plane)
Data Provider.
The evaluates the request based on predefined policy rules:Policy Engine

If the , the Consumer is notified of the violation.policy check fails
If the , the contract is finalised, and a confirmation is sent to the Consumer.policy check succeeds

Infrastructure Deployment Trigger:

Once the contract is finalised, the triggers the to begin the provisioning Connector (Control Plane) Infrastructure Orchestrator
process for the infrastructure and application deployment.

Triggering Deployment:

The sends a deployment command to the of the Infrastructure Provider, detailing the Infrastructure Orchestrator Triggering Module
specifications for provisioning the required infrastructure and deploying the application.

Provisioning and Deployment:

7.

8.

The provisions the infrastructure instance and deploys the application onto it as per the deployment command.Triggering Module
Once the deployment is complete, the fetches the access credentials (e.g., application URL, API keys) and sends Triggering Module
them back to the .Infrastructure Orchestrator

Returning Access Information:

The relays the access information to the on the Data Provider’s side.Infrastructure Orchestrator Connector (Control Plane)
The forwards the access details to the , which delivers them to the Consumer, completing the Connector Contract Negotiation Adapter
workflow.

This scenario follows the one above. Once the login credentials are received, the user accesses the dedicated infrastructure through a direct link.

ACV - Domain 3 - Management/Operation of data space

This section describes the architecture for Monitoring and Logging, within a single node (Simpl-Open agent) and does not (yet) consider inter-nodes setup.

The diagram presents a static view of the domain.application

Simpl-Open Application Component

This component represents an abstraction of any Simpl-Open application component which are being monitored. These components can produce:
Technical logs generated by the application and the underlying platform - e.g. access logs, error logs, etc.;
Business events generated by the application upon specific triggers in the business workflow - e.g. "Participant successfully onboarded";
Infrastructure metrics - e.g. CPU utilisation, RAM utilisation, etc.;
Health checks which are APIs implemented by the application components of the Simpl-Open agent to report on the status of the service
- e.g. HTTP 200 "OK".

Platform API

The platform API is an API provided by the platform on which Simp-Open application components are deployed, which allows to collect enriched
logs and metrics.

Monitoring Service

The is modeled as a service which is offered to all the Simpl-Open Application Components. It is implemented through the monitoring service
set of components described below.

1.

2.

3.
4.

Log Collection Agent

The collects Technical and business logs from each and forwards them to the log collection agent Simpl-Open application component log
.ingestion pipeline

Log Ingestion Pipeline

The receives the logs from the and standardises their format before storing them in the log ingestion pipeline log collection agent logs
.repository

Infrastructure Metrics Collection Agent

The collects infrastructure metrics from each and stores them infrastructure metrics collection agent Simpl-Open application component
directly in the .logs repository

Logs Repository

The serves as a central hub to store all types of logs and metrics. It then feeds the , the logs repository monitoring space logs visualisation
component and the component.reporting

Monitoring Space

The displays dashboards built on top of the different logs but can also query directly health endpoints to display their status.monitoring space

Logs Visualisation

The component allows to run queries on the logs and visualise them in a logs visualisation user interface. Logs visualisation and monitoring
space share a common UI with distinct tab for each functionality.

Reporting

The component includes both a user interface from which exports can also be performed, and an API to query logs for other purposes reporting
such as monitoring federation or billing.

Alert Manager

The is connected with an to trigger alerts based on predefined thresholds.monitoring space alert manager

ACV Dynamic - WF 12B - Local Node Logging and Monitoring

Below diagram describes how the components presented above interact with each other to rend the functionalities.

The Simpl-Open Application Component generates various types of data, including technical logs, business events, infrastructure metrics, and health
check outputs. These data streams are exposed via APIs for collection.

Log and Event Generation: The Simpl-Open Application Component produces technical logs, business events, infrastructure metrics, and health
check data, exposing these via APIs.
Logs Collection: The Logs Collection Agent retrieves technical logs and business events, forwarding them to the Logs Ingestion Pipeline for
processing.
Metrics Collection: The Infrastructure Metrics Collection Agent gathers infrastructure metrics and directly forwards them to the Logs Repository.
Log Transformation: The Logs Ingestion Pipeline processes and transforms the raw logs into a standardised format before storing them in the
Logs Repository.

5.

6.

7.
8.

9.
10.

1.
2.

Centralised Storage: The Logs Repository stores technical logs, infrastructure metrics, and business events in dedicated sections, ensuring they
are accessible for subsequent steps.
Log Visualisation: The Logs Visualisation component retrieves and displays logs for analysis, allowing users to review technical, infrastructure,
and business-related events.
Data Aggregation: The Monitoring Space aggregates logs and metrics, enabling real-time analysis of system health and performance.
Alert Generation: The Alert Manager processes aggregated data, generating alerts for any anomalies or threshold breaches, and notifying
relevant stakeholders.
Report Generation: The Reporting Module queries logs and metrics from the Logs Repository to create detailed reports.
Report Presentation: These reports are displayed through a user-friendly interface, providing actionable insights for decision-making.

Interfaces

APIs

Below table presents the APIs of all the components depicted on the application deployment views. These APIs can be correlated to the Application
Components Views static (per domain) through the numbering appearing on both the diagrams and the first column of this table.diagrams

Simpl-Open uses 2 types of APIs:

Synchronous JSON/HTTP APIs;
Asynchronous JSON/Kafka APIs.

Each API is described in a functional way and linked to the technical contract definition (e.g. definition for sync APIs) which is stored in GitLab.OpenAPI

For custom-built REST APIs, the following guidelines from the Belgian Interoperability Framework will be used (after the MVP) as reference: https://www.
belgif.be/specification/rest/api-guide/

Specifically, the will be applied in priority:following guidelines

The contract-first principle SHOULD be followed when developing an API. In this approach, the specifications of the REST API are created first
and not generated from the code. More details .here
Specifications of the API SHOULD be provided using OpenAPI 2.0 (aka Swagger) or OpenAPI 3.0. OpenAPI uses the OpenAPI Schema Object t
o describe the JSON representation of resources, which is a variant of JSON Schema, with some significant incompatibilities. More details .here
Path segments and query parameters within an API SHOULD use lowerCamelCase notation to enhance readability and to separate compound
names. As lowerCamelCase is used for JSON property names as well, the casing is consistent throughout the API. Trailing slashes MUST NOT
be used. More details . here
The URI SHOULD NOT contain a file extension. More details .here
A plural noun SHOULD be used for collection names, for example 'employers' or 'people'. More details .here
The HTTP methods SHOULD be used that are appropriate for the type of action performed on the resource. More details .here
The HTTP response status code SHOULD be returned that best describes the outcome of the treatment of the request. More details .here
Following guidelines SHOULD be respected when determining a name for a JSON property:

use notation lowerCamelCase

also for abbreviations: all letters after the first should be lowercase
use American English
do not use underscores (_), hyphens (-) or dots (.) in a property name, nor use a digit as first letter
don’t use overly generic terms like and as property name or as part of it info(rmation) data
the name should refer to the business meaning of its value in relation to the object in which it is specified, rather than how it is defined
omit parts of the name that are already clear from the context

Properties used from other standards, like OpenID Connect and OAuth2, are allowed to deviate from this rule. More details .here
Add example response values to the OpenAPI specification under the property. More details . examples here
Kebab-Case with uppercase SHOULD be used for HTTP header names. More details .here

Component Sync APIs Async APIs

Name Technical definition Name Technical definition

1 SD Tooling
retrieve all available shapes/schemas
Register Asset to the Connector
Validate Self-Descriptions
Retrieve available identity attributes
Create Access Policies
Create Usage Policies
Publish Self Descriptions

https://creation-wizard-api.dev.simpl-
europe.eu/swagger-ui/index.html#/

c: schema-
changed

5 Signer Service
/v1/sign: sign self-description.

https://gitlab.eclipse.org/eclipse/xfsc
/tsa/signer/-/blob/ocm-wstack/gen/http
/openapi3.json

/ /

6 Catalogue Client
Application quickSearch: quick search;

: advanced search.advanceSearch

https://xsfc-advsearch-be.dev.simpl-
europe.eu/swagger-ui/index.html

/ /

https://www.belgif.be/specification/rest/api-guide/
https://www.belgif.be/specification/rest/api-guide/
https://www.belgif.be/specification/rest/api-guide/#rule-ctr-first
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#schemaObject
https://json-schema.org/specification-links.html#draft-5
https://www.belgif.be/specification/rest/api-guide/#rule-oas-contra
https://www.belgif.be/specification/rest/api-guide/#rule-uri-notat
https://www.belgif.be/specification/rest/api-guide/#rule-uri-extens
https://www.belgif.be/specification/rest/api-guide/#rule-col-name
https://www.belgif.be/specification/rest/api-guide/#rule-meth-http
https://www.belgif.be/specification/rest/api-guide/#rule-stat-codes
https://www.belgif.be/specification/rest/api-guide/#rule-jsn-naming
https://www.belgif.be/specification/rest/api-guide/#rule-oas-exampl
https://www.belgif.be/specification/rest/api-guide/#rule-hdr-case
https://creation-wizard-api.dev.simpl-europe.eu/swagger-ui/index.html#/
https://creation-wizard-api.dev.simpl-europe.eu/swagger-ui/index.html#/
https://gitlab.eclipse.org/eclipse/xfsc/tsa/signer/-/blob/ocm-wstack/gen/http/openapi3.json
https://gitlab.eclipse.org/eclipse/xfsc/tsa/signer/-/blob/ocm-wstack/gen/http/openapi3.json
https://gitlab.eclipse.org/eclipse/xfsc/tsa/signer/-/blob/ocm-wstack/gen/http/openapi3.json
https://xsfc-advsearch-be.dev.simpl-europe.eu/swagger-ui/index.html
https://xsfc-advsearch-be.dev.simpl-europe.eu/swagger-ui/index.html

7 Schema
Management

: update the yaml configuration;changeSchemaConfiguration
: add a new yaml configuration;uploadSchemaConfiguration

: delete the configuration and remove the schema from the catalogue;revokeSchema
: list all the schemas currently loaded in the catalogue;listAvailableSchema

: transform the yaml configuration to a semantic schema, publish to transformSchema
the catalogue, inform provider;

: return all the events in topic schema-changed since offset.syncSchema

https://code.europa.eu/simpl/simpl-
open/development/gaia-x-edc/poc-
gaia-edc/-/blob/feature/1234/Swagger.
json

p: schema-
changed

8 Vocabulary
Management listVocabularies;

removeVocabulary;
UploadVocabulary.

https://code.europa.eu/simpl/simpl-
open/development/gaia-x-edc/poc-
gaia-edc/-/blob/feature/1234/Swagger.
json

/ /

9 Catalogue
a) get a full list of all vocabularies and schemas stored in the catalogue;
b) add a vocabulary or schema to the catalogue;
c) get a specific schema/vocabulary;
d) delete a schema/vocabulary;
e) revoke a self-description;
f) get the complete self-description;
g) publish a self-description to the catalogue;
h) sends a cypher query to the Neo4J database for search (used for quick and advanced
search);
i) validate a self description on Semantics, VPSignature and/or VCSignature depending
on the options selected in the request.

https://code.europa.eu/simpl/simpl-
open/development/gaia-x-edc/poc-
gaia-edc/-/blob/feature/1234/Swagger.
json

/ /

12 Query Mapper A
dapter quickSearch

AdvancedSearch

https://adapter.dev.simpl-europe.eu
/swagger-ui/index.html

13 Tier 1
Authentication
Provider

Keycloak

OIDC: set of APIs for managing authentication;
GET Realms: API for retrieving all the Realms configured;
GET Realm by Realm Name: API for retrieving a Realm using its name;
GET Users: API for retrieving the user list of a Realm;
GET Roles: API for retrieving the role list of a Realm;
GET Roles by User ID: API for retrieving the roles assigned to a user.

https://www.keycloak.org/docs-api
/latest/rest-api/index.html

14 Tier 2
Authentication
Provider

Keypair Controller

GET /keypair - Get installed keypair

POST /keypair - Import KeyPair

POST /keypair/generate - Generate KeyPair

CRS Controller

POST /csr/generate - Generate CSR

15 User & Roles User Roles

role-controller: a set of APIs for managing roles and the assignment between role and
identity attributes;

 - POST /role/{id}/identity-attributes assigns the identity attributes to
a role;

- POST /role/{id}/duplicate-identity-attribute copies the identity
attributes assignment from a source role to another target role;

 - POST /role/assigned-identity-attributes retrieves the identity
attributes for a set of roles;

 - DELETE /role delete the assignment of identity attributes from a role.
credential-controller: a set of APIs for getting the information about the credential installed
within the agent;

 - GET /credential gets the information about the credential installed;
 - POST /credential installs the credential;

 - DELETE /credential deletes the credential installed;
 - GET /credential/public-key gets the public key information about the

credential installed;
 - GET /credential/my-id gets the id information about the credential installed.

user-controller: a set of APIs for managing users and related information associated with
the user;

 - GET /user gets the Tier 1 users;
 - GET /user/{uuid}/roles gets the Tier 1 roles associated with the user.

session-controller: a set of APIs for managing information about the session of a
participant, including the retrieval of identity attributes from the ephemeral proof;

 - GET /session/{participantId} retrieves the session information of a
participant.

identity-attribute-controller: a set of APIs for managing information about the identity
attributes stored locally in the agent;

 - GET /identity-attribute/search searches the identity attributes stored
locally in the agent.

agent-controller: a set of APIs for managing agent communication and providing request
and synchronization functionalities for identity attributes from the ephemeral proof to the
local copy.

https://code.europa.eu/simpl/simpl-
open/development/iaa/users-roles/-
/tree/main/openapi?ref_type=heads

16 Security
Attributes
Provider

Security Attributes Provider

identity-attribute-controller: a set of APIs for managing identity attributes and the
assignment/unassignment functionalities to the participant:

GET /identity-attribute/{id} - retrieves the identity attribute;
PUT /identity-attribute/{id} - updates the identity attribute;
POST /identity-attribute - creates the identity attribute;
GET /identity-attribute/search - searches the identity attributes;
DELETE /identity-attribute/{id} - deletes the identity attribute;
PUT /identity-attribute/assignable/{value} - changes the
assignable value to make an attribute assignable or not assignable;
PUT /identity-attribute/assign-participant/{userId} - assigns the
identity attributes to a participant;
DELETE /identity-attribute/unassign-participant/{userId} - delet
es the assignment (unassign) the identity attributes to a participant;
PUT /identity-attribute/add-participant-type/
{participantType} - assigns the identity attributes to a participant type.

mtls-controller

https://code.europa.eu/simpl/simpl-
open/development/iaa/security-
attributes-provider/-/tree/main
/openapi?ref_type=heads

https://code.europa.eu/simpl/simpl-open/development/gaia-x-edc/poc-gaia-edc/-/blob/feature/1234/Swagger.json
https://code.europa.eu/simpl/simpl-open/development/gaia-x-edc/poc-gaia-edc/-/blob/feature/1234/Swagger.json
https://code.europa.eu/simpl/simpl-open/development/gaia-x-edc/poc-gaia-edc/-/blob/feature/1234/Swagger.json
https://code.europa.eu/simpl/simpl-open/development/gaia-x-edc/poc-gaia-edc/-/blob/feature/1234/Swagger.json
https://code.europa.eu/simpl/simpl-open/development/gaia-x-edc/poc-gaia-edc/-/blob/feature/1234/Swagger.json
https://code.europa.eu/simpl/simpl-open/development/gaia-x-edc/poc-gaia-edc/-/blob/feature/1234/Swagger.json
https://code.europa.eu/simpl/simpl-open/development/gaia-x-edc/poc-gaia-edc/-/blob/feature/1234/Swagger.json
https://code.europa.eu/simpl/simpl-open/development/gaia-x-edc/poc-gaia-edc/-/blob/feature/1234/Swagger.json
https://code.europa.eu/simpl/simpl-open/development/gaia-x-edc/poc-gaia-edc/-/blob/feature/1234/Swagger.json
https://code.europa.eu/simpl/simpl-open/development/gaia-x-edc/poc-gaia-edc/-/blob/feature/1234/Swagger.json
https://code.europa.eu/simpl/simpl-open/development/gaia-x-edc/poc-gaia-edc/-/blob/feature/1234/Swagger.json
https://code.europa.eu/simpl/simpl-open/development/gaia-x-edc/poc-gaia-edc/-/blob/feature/1234/Swagger.json
https://adapter.dev.simpl-europe.eu/swagger-ui/index.html
https://adapter.dev.simpl-europe.eu/swagger-ui/index.html
https://www.keycloak.org/docs-api/latest/rest-api/index.html
https://www.keycloak.org/docs-api/latest/rest-api/index.html
https://code.europa.eu/simpl/simpl-open/development/iaa/users-roles/-/tree/main/openapi?ref_type=heads
https://code.europa.eu/simpl/simpl-open/development/iaa/users-roles/-/tree/main/openapi?ref_type=heads
https://code.europa.eu/simpl/simpl-open/development/iaa/users-roles/-/tree/main/openapi?ref_type=heads
https://code.europa.eu/simpl/simpl-open/development/iaa/security-attributes-provider/-/tree/main/openapi?ref_type=heads
https://code.europa.eu/simpl/simpl-open/development/iaa/security-attributes-provider/-/tree/main/openapi?ref_type=heads
https://code.europa.eu/simpl/simpl-open/development/iaa/security-attributes-provider/-/tree/main/openapi?ref_type=heads
https://code.europa.eu/simpl/simpl-open/development/iaa/security-attributes-provider/-/tree/main/openapi?ref_type=heads

GET /mtls/identity-attribute - retrieves the identity attributes assigned to
a participant's ID;
GET /mtls/identity-attribute/{certificateId} - retrieves the identity
attributes assigned to a credential Id.

17 Identity Provider Identity Provider

participant-controller: a set of APIs for managing participants including the onboarding
functionalities

 - PUT / /{userId}participant changes the detail of a participant;
 - GET /participant retrieves the participant's information;

 - POST /participant creates an applicant participant;
 - POST /participant/initialize at the approval of the onboarding request,

creates the participant and its credentials;
 - POST /participant/attachment uploads the documents needed during the

onboarding procedure;
 - GET /participant/{participantId}/credential-validity retrieves

the expiration date of the credential of a participant;
 - GET /participant/search searches for participants.

mtls-ephemeral-proof-controller
POST /mtls/token - generates the ephemeral proof of a participant.

mtls-controller
GET /mtls/echo - technical API for testing mTLS communication.

certificate-controller
GET /certificate/{certificateId} - retrieves the credential of a
participant;
DELETE /certificate/{certificateId} - deletes (revokes) a credential of
a participant.

https://code.europa.eu/simpl/simpl-
open/development/iaa/identity-
provider/-/tree/main/openapi?
ref_type=heads

EJBCA REST Interface API

GET /ejbca/publicweb/status/ocsp - checks the status and availability of
the OCSP (Online Certificate Status Protocol) service provided by EJBCA;
GET /ejbca/publicweb/webdist/certdist - distributes certificate-related
files, such as Certificate Authority (CA) certificates and Certificate Revocation Lists
(CRLs).

https://docs.keyfactor.com/ejbca/latest
/ejbca-rest-interface

18 Onboarding Onboarding Template APIs

GET : Get Onboarding Template by /onboarding-template/{participantType}
Participant Type
PUT : Update Onboarding Template/onboarding-template/{participantType}
DELETE : Delete Onboarding /onboarding-template/{participantType}
Template
PATCH : Update Onboarding /onboarding-template/{participantType}
Template
GET : Get Onboarding Templates/onboarding-template

Onboarding Status APIs

GET : Get Onboarding Status by Value/onboarding-status/{value}
PUT : Update Onboarding Status/onboarding-status/{value}
DELETE : Delete Onboarding Status/onboarding-status/{value}
GET : Check if Onboarding Status is Final/onboarding-status/is-final
GET : Get Initial Onboarding Status/onboarding-status/initial

MIME Type APIs

GET : Get MIME type by ID/mime-type/{id}
PUT : Update MIME type by ID/mime-type/{id}
DELETE : Delete MIME type by ID/mime-type/{id}
GET : Get all MIME types/mime-type
POST : Create a new MIME type/mime-type

Onboarding Request Apis

GET : Search Onboarding Requests/onboarding-request
POST : Create Onboarding Request/onboarding-request
POST : Add Document to Onboarding /onboarding-request/{id}/document
Request
PATCH : Set Document for Onboarding /onboarding-request/{id}/document
Request
PATCH : Set Onboarding Request Status/onboarding-request/{id}/status
PATCH : Set Expiration /onboarding-request/{id}/expiration-timeframe
Timeframe for Onboarding Request
PATCH : Add Comment to Onboarding /onboarding-request/{id}/comment
Request
GET : Get Onboarding Request/onboarding-request/{onboardingRequestId}
GET /onboarding-request/{onboardingRequestId}/document/

: Get Document from Onboarding Request{documentId}
DELETE /onboarding-request/{onboardingRequestId}/document/

: Delete Document from Onboarding Request{documentId}

Participant Type APIs

GET : Get all participant types/participant-type

Credential Request APIs

POST : Create a new credential request/credential-request

https://code.europa.eu/simpl/simpl-
open/development/iaa/onboarding/-
/tree/main/openapi?ref_type=heads

20 Connector Management API

Configuring and managing Assets (Any kind of resources);
Assign Policies;
Assign Contract Templates.

https://app.swaggerhub.com/apis
/eclipse-edc-bot/management-api/0.
7.0

21 Connector Control Plane

Start Contract negotiation.

https://app.swaggerhub.com/apis
/eclipse-edc-bot/control-api/0.7.0

22 Connector Data Plane

Data Transfer, CRUD.

https://app.swaggerhub.com/apis
/eclipse-edc-bot/public-api/0.7.0

https://code.europa.eu/simpl/simpl-open/development/iaa/identity-provider/-/tree/main/openapi?ref_type=heads
https://code.europa.eu/simpl/simpl-open/development/iaa/identity-provider/-/tree/main/openapi?ref_type=heads
https://code.europa.eu/simpl/simpl-open/development/iaa/identity-provider/-/tree/main/openapi?ref_type=heads
https://code.europa.eu/simpl/simpl-open/development/iaa/identity-provider/-/tree/main/openapi?ref_type=heads
https://docs.keyfactor.com/ejbca/latest/ejbca-rest-interface
https://docs.keyfactor.com/ejbca/latest/ejbca-rest-interface
https://code.europa.eu/simpl/simpl-open/development/iaa/onboarding/-/tree/main/openapi?ref_type=heads
https://code.europa.eu/simpl/simpl-open/development/iaa/onboarding/-/tree/main/openapi?ref_type=heads
https://code.europa.eu/simpl/simpl-open/development/iaa/onboarding/-/tree/main/openapi?ref_type=heads
https://app.swaggerhub.com/apis/eclipse-edc-bot/management-api/0.7.0
https://app.swaggerhub.com/apis/eclipse-edc-bot/management-api/0.7.0
https://app.swaggerhub.com/apis/eclipse-edc-bot/management-api/0.7.0
https://app.swaggerhub.com/apis/eclipse-edc-bot/control-api/0.7.0
https://app.swaggerhub.com/apis/eclipse-edc-bot/control-api/0.7.0
https://app.swaggerhub.com/apis/eclipse-edc-bot/public-api/0.7.0
https://app.swaggerhub.com/apis/eclipse-edc-bot/public-api/0.7.0

23 Triggering
Module

Deployment Script ID management API is providing the following functionalities:

Adding the Deployment Script (also from the UI, which relies on this API);
Modifying the Deployment Script (also from the UI, which relies on this API);
Removing the Deployment Script (also from the UI, which relies on this API. The removal
process will remove the deployment script only from the repository, and not from the
database, to keep a trace for future potential business needs. If the business decides to
also remove it from the data base, the technological implementation is effortless);
Triggering the deployment Script (at the time of contracting an offer on the catalogue, if
the offer has a DeploymentScriptID, the API will be called and that script will be
executed).

https://code.europa.eu/simpl/simpl-
open/development/infrastructure
/infrastructure-be/-/blob/develop
/openapi/script-management-openapi.
yaml

24 Contract
Manager
Orchestrator

Issue Verifiable credential
POST /contract/v1/credentials/agreements/{contractAgreementId}/definitions/
{contractDefinitionId}

Confirm signing of the Contract Agreement
POST /contract/v1/agreements/{contractAgreementId}/definitions/
{contractDefinitionId}/signatures/confirmation

Get Contract Agreement
GET /contract/v1/agreements/{contractAgreementId}

Get Contract Agreement File
GET /contract/v1/agreements/file/{contractAgreementId}

https://code.europa.eu/simpl/simpl-
open/development/contract-billing
/contract/-/tree/develop/http

Issue
Verifiabl
e
credenti
al
Response

C
o
nt
r
a
ct
A
g
r
e
e
m
e
nt
R
e
s
p
o
n
s
e
E
v
e
nt

src/main/java/eu/europa/ec/simpl
/contracts/kafka/events · main ·
Simpl / Simpl-Open /
Development / Contract-Billing /
contract · GitLab

25 Contract
Manager
Backend

/ /
Issue
Verifiabl
e
credenti
al
Request

C
o
nt
r
a
ct
A
g
r
e
e
m
e
nt
R
e
q
u
e
st
E
v
e
nt

Confirm
signing
of the
Contract
Agreem
ent

S
ta
tu
s
U
p
d
at
e
R
e
q
u
e
st
E
v
e
nt

src/main/java/eu/europa/ec/simpl
/contracts/kafka/events · main ·
Simpl / Simpl-Open /
Development / Contract-Billing /
contract · GitLab

27 VC Issuer
Issue Verifiable Credential.

/

Currently under
investigation

https://code.europa.eu/simpl/simpl-open/development/infrastructure/infrastructure-be/-/blob/develop/openapi/script-management-openapi.yaml
https://code.europa.eu/simpl/simpl-open/development/infrastructure/infrastructure-be/-/blob/develop/openapi/script-management-openapi.yaml
https://code.europa.eu/simpl/simpl-open/development/infrastructure/infrastructure-be/-/blob/develop/openapi/script-management-openapi.yaml
https://code.europa.eu/simpl/simpl-open/development/infrastructure/infrastructure-be/-/blob/develop/openapi/script-management-openapi.yaml
https://code.europa.eu/simpl/simpl-open/development/infrastructure/infrastructure-be/-/blob/develop/openapi/script-management-openapi.yaml
https://code.europa.eu/simpl/simpl-open/development/contract-billing/contract/-/tree/develop/http
https://code.europa.eu/simpl/simpl-open/development/contract-billing/contract/-/tree/develop/http
https://code.europa.eu/simpl/simpl-open/development/contract-billing/contract/-/tree/develop/http
https://code.europa.eu/simpl/simpl-open/development/contract-billing/contract/-/tree/main/src/main/java/eu/europa/ec/simpl/contracts/kafka/events
https://code.europa.eu/simpl/simpl-open/development/contract-billing/contract/-/tree/main/src/main/java/eu/europa/ec/simpl/contracts/kafka/events
https://code.europa.eu/simpl/simpl-open/development/contract-billing/contract/-/tree/main/src/main/java/eu/europa/ec/simpl/contracts/kafka/events
https://code.europa.eu/simpl/simpl-open/development/contract-billing/contract/-/tree/main/src/main/java/eu/europa/ec/simpl/contracts/kafka/events
https://code.europa.eu/simpl/simpl-open/development/contract-billing/contract/-/tree/main/src/main/java/eu/europa/ec/simpl/contracts/kafka/events
https://code.europa.eu/simpl/simpl-open/development/contract-billing/contract/-/tree/main/src/main/java/eu/europa/ec/simpl/contracts/kafka/events
https://code.europa.eu/simpl/simpl-open/development/contract-billing/contract/-/tree/main/src/main/java/eu/europa/ec/simpl/contracts/kafka/events
https://code.europa.eu/simpl/simpl-open/development/contract-billing/contract/-/tree/main/src/main/java/eu/europa/ec/simpl/contracts/kafka/events
https://code.europa.eu/simpl/simpl-open/development/contract-billing/contract/-/tree/main/src/main/java/eu/europa/ec/simpl/contracts/kafka/events
https://code.europa.eu/simpl/simpl-open/development/contract-billing/contract/-/tree/main/src/main/java/eu/europa/ec/simpl/contracts/kafka/events

28 Contract
Consumption
Adapter

APIs for starting contract negotiation & requesting a resource transfer

Request an offering from a provider
Request contract negotiation for a specific asset
Receive the Status of contract negotiation

https://contract-consumption-be.dev.
simpl-europe.eu/swagger-ui/index.
html

completed, planned

User Interfaces

Traceability from the functional architecture

The following table presents a mapping between the components from the functional architecture and the ones from the application architecture.

Functional Component Application Component

Onboarding Onboarding

IAA Authorisation

Tier 1 Authentication Provider

Tier 2 Authentication Provider

Identity Provider

Security Attributes Provider

User & Roles

Credential Database/Vault

Vocabulary Management Vocabulary Management

Schema Management Schema Management

Schema Registry

Service Offering Editor SD Tooling

Signer Service

Wallet

Policy Template Datastore

Federated Catalogue Catalogue

Search Catalogue Client Application

Data Space Connector Connector

Contract Management Contract Manager Orchestrator

Contract Manager Backend

Contract Template Datastore

Data Transfer Connector

Infrastructure Management Triggering Module

Infrastructure Provisioner

Observability Monitoring Module

This section is a placeholder for content that will be added by . 31 déc. 2024

https://contract-consumption-be.dev.simpl-europe.eu/swagger-ui/index.html
https://contract-consumption-be.dev.simpl-europe.eu/swagger-ui/index.html
https://contract-consumption-be.dev.simpl-europe.eu/swagger-ui/index.html

1.
2.

Simpl-Open Data Architecture
Simpl-Open Data Architecture presents data entities and/or collections and how they are structured within the system.

Given that Simpl-Open combines existing/reusable open-source components and custom-built components, the following approach is followed:

For open-source components, the dedicated sub-section provides a link to the available data model documentation of the component.
For custom components, the dedicated sub-section describes the data model per component (as per the microservices approach) through
following layers:

Layer Description

Concep
tual

The conceptual data model (CDM) operates at a high level, providing an overarching perspective on the application's data needs. It defines a
broad and simplified view of the data to create a shared understanding of the application by capturing the essential concepts. These essential
concepts are captured in an Entity Relationship Diagram (ERD) and the accompanying entity definitions.

Logical The logical data model (LDM) contains representations that fully defines relationships in data, adding the details and structure of essential
entities. The LDM remains data platform agnostic because it focuses on business needs, flexibility, and portability.

The LDM includes the specific attributes of each entity, the relationships between entities, and the cardinality of those relationships.

Physical The physical data model (PDM) is a data model that represents relational data objects. It describes the technology-specific and database-
specific implementation of the data model and is the last step in transforming from the logical data model to a working database. The physical
data model includes all the needed physical details to build the database.

Open-Source Components Data Model

OSS Data Model

XFSC
Signer

The self-description is wrapped into a verifiable credentials and the proof section of the VC contain the signature. The data model is defined
here: https://www.w3.org/TR/vc-data-model/#proofs-signatures

XFSC
catalogue

XFSC catalogue stores the data in three different ways:

File storage for the JSON-LD serialisation. Definition of the file format can be found . The data model itself depend on https://json-ld.org/
the schema definition used (defined in Additional Technical Specifications about Capabilities section).
Graph-DB (Neo4J) used as index to allow semantic queries. The data model of the database also depends on the schema.
Metadata stored in a relational database (PostgreSQL). Data Model is described in https://gaia-x.gitlab.io/data-infrastructure-federation-
services/cat/architecture-document/architecture/catalogue-architecture.html#_metadata_store

HashiC
orp
Vault

Secrets data is stored in secrets engine . The data model depends on the model used https://developer.hashicorp.com/vault/docs/secrets
currently a Key-Value (KV) Store Data Model is used.

Keycloak Keycloak use a "code first" approach to data modelling. There are no data model diagrams available in their documentation but the data
model is described in their code repository: https://github.com/keycloak/keycloak/tree/main/model

EJBCA EJBCA data model diagram is located https://doc.primekey.com/ejbca/ejbca-introduction/ejbca-architecture/internal-architecture

Crosspl
ane

Resource Definition:

https://docs.crossplane.io/latest/concepts/composite-resource-definitions/

Kuberne
tes

Kubernetes objects:
https://kubernetes.io/docs/concepts/overview/working-with-objects/

Ansible Ansible Data Manipulation:

https://docs.ansible.com/ansible/latest/playbook_guide/complex_data_manipulation.html

ArgoCD RBAC Model

https://argo-cd.readthedocs.io/en/stable/operator-manual/rbac/#rbac-model-structure

Custom Components Data Model

Conceptual Data Model

This section is a placeholder for content that will be added by . 31 déc. 2024

https://www.w3.org/TR/vc-data-model/#proofs-signatures
https://json-ld.org/
https://gaia-x.gitlab.io/data-infrastructure-federation-services/cat/architecture-document/architecture/catalogue-architecture.html#_metadata_store
https://gaia-x.gitlab.io/data-infrastructure-federation-services/cat/architecture-document/architecture/catalogue-architecture.html#_metadata_store
https://developer.hashicorp.com/vault/docs/secrets
https://github.com/keycloak/keycloak/tree/main/model
https://doc.primekey.com/ejbca/ejbca-introduction/ejbca-architecture/internal-architecture
https://docs.crossplane.io/latest/concepts/composite-resource-definitions/
https://kubernetes.io/docs/concepts/overview/working-with-objects/
https://docs.ansible.com/ansible/latest/playbook_guide/complex_data_manipulation.html
https://argo-cd.readthedocs.io/en/stable/operator-manual/rbac/#rbac-model-structure

1.
2.

Logical Data Model

Physical Data Model

Simpl-Open Technology Architecture
Simpl-Open Technology Architecture develops the target technology architecture that enables the application architecture to be delivered through
technology components and technology services. Each application component is mapped to a technology implementing the capabilities.

It identifies technology components through the following views:

View Description

Technology
Components Static
View

Provide, per business domain, an enriched view of the Application Components Static View by adding technology components
that support the implementation of the application components.

Technology
Components
Dynamic View

Provide a dynamic view (sequence diagrams) per business process (or sub-process) on how technology components are used to
satisfy different workflows.

Technology
Deployment View

Provides an aggregated view of how the different technology components (cross BPs and domains) are deployed for all Simpl-
Open agent types (Governance Authority, Data Provider, Infrastructure Provider, Application Provider, Consumer).

Next to these architecture views, the following are provided:

A table of OSS Technology - with reasons for selecting them and links to existing documentation such as data models and installation guides;
Detailed technical specification .that are particularly relevant for contributing to Simpl-Open and/or implementing it in a data space

Technology Components Views

Technology components views are presented per functional domain in following sub-sections.

For each functional domain, are presented:

a static view of the entire domain which enriches the application components view with the technologies that are implementing the components;
a set of dynamic views (sequence diagrams) that present how a subset of the technology components are used to satisfy different (parts of)
business processes.

TCV - Domain 1 - Onboarding & IAA

This perspective illustrates the correlation between the architectural elements and the technologies, components, and interfaces intended for use in
implementing the application components.

Onboarding

The component is implemented as a Java backend application.Onboarding Manager
The component is implemented as an Angular frontend application.Onboarding UI
The component is implemented in PostgreSQL.Onboarding Database

Identity Provider

The service is implemented as a Java backend application.Credential Management
The service is implemented as a Java backend application.Credential Verification
The component is implemented as an Angular frontend application.Identity Provider UI
The component is implemented with Enterprise JavaBeans Certificate Authority (EJBCA).Credential Factory
The is implemented in PostgreSQL.Identity Database

Security Attributes Provider

The component is implemented as a Java backend application.Attributes Management
The component is implemented as an Angular frontend application.Security Attributes Provider UI
The is implemented in PostgreSQL.Attributes Database

User & Roles

The component is implemented as a Java backend application.User & Roles Management
The component is implemented as an Angular frontend application.User & Roles UI
The is implemented in PostgreSQL.User & Roles Database

Tier 1 Authentication Provider

The component, providing the Agent Users Management and Local IDP Federation services, is implemented with Keycloak.Users Management
The component is implemented as an Angular frontend application.Tier 1 Authentication Provider UI
The is implemented in PostgreSQL.User Database

Tier 2 Authentication Provider

The component is implemented as a Java backend application.Credential Management
The component is implemented as an Angular frontend application.Tier 2 Authentication Provider UI

Credentials Database/Vault

The is with Postgres. Will be replaced Hashicorp Vault in the future.Credentials Database/Vault implemented

Authorisation

The component is implemented with Spring Cloud Gateway.Authorisation Tier 1 RBAC
The component is implemented with Spring Cloud Gateway.Authorisation Tier 2 ABAC
The component is implemented as an Angular frontend application.Authorisation UI

TCV Dynamic - BP 03A - Onboarding of a participant - Tier II

This perspective illustrates the interactions and the flows between all the technological components.

TCV Dynamic - BP 03B - Onboarding Tier 1 - Organisation Local IDP(Directory) Connection/Mapping

This perspective illustrates the interactions and the flows between all the technological components.

TCV - Domain 2 - Publish and consume resources

This perspective illustrates the correlation between the architectural elements and the technologies, components, and interfaces intended for use in
implementing the application components.

Triggering Module

The component is implemented as a Java backend application. Script Storage Management Module
The component is implemented as a Java backend application. Script Execution Module

The component is implemented as a Java backend application. Access Management Module
The component is implemented as an Angular frontend application. Triggering Module UI
The interface is implemented as a Kafka consumer Json/Kafka. API

Message Broker

The component is implemented as a Kafka. Message Broker

Infrastructure Provisioner

The component is implemented in ArgoCD. Infrastructure Provisioner
The component is implemented in Crossplane. Infrastructure Provisioner
The interface is implemented as a Kafka consumer Json/Kafka. API

Infrastructure Provider Storage

The is implemented in PostgreSQL. Database
The is implemented in Git-based. Repository

Contract Manager Backend

The component is implemented as a Java backend application. Contract Manager Backend
The interface is implemented as a Kafka consumer Json/Kafka. API

Contract Manager Orchestrator

The component is implemented as a Java backend application. Contract Manager Orchestrator
The interface is implemented as a Kafka consumer Json/Kafka. API

Connector

The component is implemented as an Eclipse Dataspace Connector. Connector
The component is implemented as a Java backend application.Control plane
The component is implemented as a Java backend application.Data plane
The is implemented as a Java backend application.Infrastructure orchestrator
The component is implemented as a Java backend application.Policy engine

Catalogue Client Application

The component is implemented as a Java backend application. Catalogue Client Application
The component is implemented as an Angular frontend application. Catalogue Client Application UI

Catalogue Schema Backend

The component is implemented as a Java backend application. Catalogue Schema Backend

Contract Negotiation Adapter

The component is implemented as a Java backend application. Contract Negotiation Adapter

SD Tooling

The component is implemented as a Java backend application. SD Manager
The component is implemented as a Java backend application. Validation BE
The component is implemented with XFSC Organisation Credential Manager.SD Creation Tool
The component is implemented as an Angular frontend application. SD Tooling UI

Signer Service

The component is implemented with XFSC Organisation Credential Manager. Signer service

Wallet

The component is implemented with XFSC Organisation Credential Manager. Wallet

Policy Template Datastore

The component is implemented with XFSC Organisation Credential Manager. Policy template datastore

Query Mapper Adapter

The component is implemented with Spring Cloud Gateway. Query mapper adapter

Schema Registry

The component is implemented as a File System. Schema registry

Policy Template Datastore

The component is implemented as a File System. Policy Template Datastore

Contract Template Datastore

The component is implemented as a File System. Contract Template Datastore

Vocabulary Management

The component is implemented as a File System. Vocabulary management
The component is implemented as an Angular frontend application. Vocabulary management UI

Catalogue

The component is implemented with XFSC . Search Engine
The component is implemented in PostgreSQL with Neo4J.Catalogue Database
The component is implemented as a File system.Vocabulary Datastore
The is implemented with XFSC.Management Service
The service is implemented with RDFLib pySHACL.Sematic Validation
The service is implemented with RDFLib pySHACL.Quality rule validation
The service is implemented with RDFLib pySHACL.Syntax Validation

TCV Dynamic - BP 05A - Add or Update Resource (Publish) on Catalogue

This perspective illustrates the interactions and the flows between all the technological components.

TCV Dynamic - BP 06 - Search on Catalogue (Infrastructure, Data, Application)

This perspective illustrates the interactions and the flows between all the technologies.

The search stack is split into a consumer/provider part and a centralized one.

The first one includes a client that offers a UI to the end user. The frontend application, for the advanced search, checks the parameters of the search with
a local instance of the schema cache system previously with the instance present on the Governance Authority side. This allows us to perform a synced
check on the parameters inserted in the Advanced search UI and send to the Query Mapper Adapter queries that are consistent with the schemas of the
resources present in the data space. Furthermore on both sides is present an instance of the Spring Cloud API Gateway which takes care of securing the
connection towards the other agent.

In the Governance Authority instance, apart from the already mentioned components, there is the Query Mapper & Filter Adapter which is in charge of
translating the incoming query to the required query language and applying the filtering based on access policies. Then this last component redirects the
resulting query to the API of the catalogue. The XFSC catalogue includes an internal search engine that will be used to perform the query on the Self-
description present underneath Neo4J DB. The catalogue has behind also a Postgres DB for managing metadata and ensuring efficient file identification
and data consistency.

TCV Dynamic - BP 07A - Establish a usage contract agreement

This perspective illustrates the interactions and the flows between all the technological components.

TCV Dynamic - BP 08 - Consumers select and use an Infrastructure Catalogue Resource from the Infrastructure Provider

This perspective illustrates the interactions and the flows between all the technological components.

TCV Dynamic - BP 09A - Data Resource Consumption - Consumer consumes a data resource from the provider

This perspective illustrates the interactions and the flows between all the technologies.

The data consumption BP9A is mainly addressed by the EDC connector Java backend.

The EDC connector is in charge of various steps of the Dataspace protocol. In particular, the core of the backend is the control plane that is in charge of
the contract negotiation and the selection of the correct data plane depending on the type of resource requested while the actual data transfer is performed
by the selected EDC connecter Java extension which will connect to the real data source.
In the consumption process policies should be checked and this action is performed by the Policy Module present in the EDC connector Java backend.

TCV Dynamic - BP 09B - Data Resource Consumption - Consumer receives data processing service over a dataset via
an Application

This perspective illustrates the interactions and the flows between all the technologies.

The data consumption BP which encompasses also the infrastructure provider is addressed by the infrastructure-related components (see BP8 for the
details about this part).

The request from the user is directed to the Data provider EDC connector Java backend which forwards the request to the custom EDC extension
connector that is capable of interacting with infrastructure Provider APIs.

TCV - Domain 3 - Management/Operation of data space

This section describes the architecture for Monitoring and Logging, within a single node (Simpl-Open agent) and does not (yet) consider inter-nodes setup.

This perspective illustrates the correlation between the architectural and the technologies, components, and interfaces intended for use in elements
implementing the application components.

The monitoring service is based primarily on the Elastic stack.

Filebeat and Metricbeat are used to collect respectively technical logs and infrastructure metrics.

As Simpl-Open application services are deployed as containers in Kubernetes, both technical logs and infrastructure metrics are collected via the kube-api.

Technical logs are then forwarded to Logstash for processing and potential transformation. Business logs are directly sent by the application services to
Logstash.

Metricbeat, Hearthbeat and Logstash forward respectively infrastructure metrics and logs (technical and business) to Elasticsearch which acts as central
logs repository.

Kibana is used as user interface to provide reporting, log visualisation, monitoring space and alerting capabilities. Kibana also queries health endpoints of
the services, exposed as REST/JSON APIs, to display their health in a dashboard.

A custom reporting application exposes a REST/JSON API to query logs for other purposes such as monitoring federation (i.e. forwarding some logs to the
Governance Authority) or billing.

1.

2.

3.

Technology Deployment View

The following Technology Deployment View describes how the different technology components are deployed for all Simpl-Open agent types (Governance
Authority, Data Provider, Infrastructure Provider, Application Provider, Consumer):

Simpl-Open is designed to be a container-native application and is provided with all the required deployment artefacts to be deployed on a pre-existing Kub
.ernetes Cluster

Each agent is deployed inside its own .Kubernetes Namespace

Three types of Workloads are used:

Deployment - used for managing a stateless application workload, where any Pod in the Deployment is interchangeable and can be replaced if
needed.
StatefulSet - used to run one or more related Pods that do track state somehow (for example, if the workload records data persistently).
StatefulSet can match Pods with PersistentVolumes.
DaemonSet - used for Pods that provide facilities that are local to nodes. Every time a node is added to the cluster and it matches the
specification in a DaemonSet, the control plane schedules a Pod for that DaemonSet onto the new node. Each pod in a DaemonSet performs a
job similar to a system daemon on a classic Unix / POSIX server.

Kubernetes Services are used to expose certain components, running as one or more pods, behind a single outward-facing endpoint, even when the
workload is split across multiple nodes.

The content presented in this section presents a view on the MVP (December 2024) for the GA, Data Provider, Infra Provider and Consumer.
Application Provider view fall behind the scope of the MVP.

Technology Open-Source Products

The present section is divided in 2 parts:

Roadmap of 3 Years with draft consideration about Open-Source Software product selection;
Open-Source Product Decision, as architecture is further analysed and components / interface are confirmed.

We assume to be valid the Roadmap OSS selection, until the respective capabilities are confirmed or amended by the Decisions that will happen in Agile
fashion quarter by quarter.

Simpl-Open Technology Roadmap

The following illustration presents the Draft 3 Years Roadmap of Open-Source Software product selection to implement the functional capabilities required
by Simpl-Open.

Also below is presented the table with the rational for selection, available today.

As general process, quarter by quarter, release by release, the Architecture team will further analyse capability by capability and confirm or amend
selection based on detailed requirement and detailed architecture, including interaction with other technologies/components.

The draft table below provide a first rationale of selection identified as preliminary stages.

To
ols

Description Rationale

Ev
id
en
O
pe
n-
So
ur
ce

Partitum is a Proven solution component of the Eviden
Clearing house as a service. This solution is currently
running at Athumi (Belgium – Flanders). A data space
intermediate, that is responsible for securely exchanging
data between the different actors in a data space
community and monetisation.

The product provides the necessary tools to remove
financial burden for the actors by:

No integrated toolset available in the market matching client requirements.

· Onboard the different actors in your eco-system and
taking care of the contractual and financial agreements
necessary to exchange data;

· Clearing of transactions based upon contractual
agreements between the actors and their risk profile;

· Settlement of executed transactions between
different actors;

· Automatically invoicing through billing or self-billing.

D
A
PS

Issue dynamic identity attributes based on scoped request. It fits the second authentication mechanism described in Annex III of the
“Architecture Vision Document” where identity attributes are dynamically by the
Identity Attributes along with an ephemeral proof.

EJ
B
CA

Public key infrastructure certificate authority software.

https://www.ejbca.org/

It is needed in all the envisioned authentication mechanisms between Participants
as they require the issuance of a x.509 certificate.

Ke
ycl
oak

Identity and Access Management software.

https://www.keycloak.org/

This component will manage the authentication and authorisation of the End Users.
It can be easily federated with existing Participants’ identity providers and extended
to implement several types of authentication mechanisms (2FA, Digital Wallet, etc.).

EL
K
St
ack

https://www.elastic.co/elastic-stack/ As suggested by Tenders Specifications and based on Market Standard.

Pr
o
m
et
he
us

https://prometheus.io/ As suggested by Tenders Specifications and based on Market Standard.

Gr
af
ana

https://grafana.com/ As suggested by Tenders Specifications and based on Market Standard.

M
TLS

Mutual TLS (mTLS) is a security practice that provides
encrypted communications between every workload and
application in your infrastructure, regardless of location.

Recognised protocols by several Open-Source products.

Cr
os
spl
ane

Crossplane enables cloud-agnostic infrastructure
provisioning and management.

https://www.crossplane.io/

To abstract away cloud-specific APIs, enabling consistent control of resources
across various cloud providers. It empowers DevOps teams to define infrastructure
as code (IaC) and easily manage multi-cloud environments, enhancing agility and
reducing vendor lock-in.

Te
rra
form

Terraform automates infrastructure as code, simplifying
provisioning and scaling.

https://www.terraform.io/

For its declarative IaC approach, enabling infrastructure automation through code.
Terraform's extensive provider ecosystem ensures broad cloud support and efficient
orchestration, facilitating rapid scaling and reducing operational overhead.

An
sib
le

Ansible orchestrates application deployment and
configuration with minimal complexity.

https://www.ansible.com/

Agentless automation for simplified application provisioning and configuration
management. Ansible's idempotent playbooks, robust modules, and YAML-based
syntax simplify complex tasks, ensuring consistency and efficient operations across
infrastructure.

Ku
be
rn
et
es

Kubernetes is a container orchestration platform,
simplifying application deployment and scaling.

https://kubernetes.io/

For containerised workload management and orchestration. Its advanced features,
including auto-scaling, rolling updates, and service discovery, simplify application
lifecycle management and enhance resource utilisation, making it a top choice for
container-based applications.

U
FW

Uncomplicated Firewall (UFW) simplifies firewall
management for Linux systems.

Straightforward firewall rule management on Linux. Its user-friendly interface and
uncomplicated syntax make it a powerful tool to secure systems against unwanted
network traffic while simplifying the configuration of firewall policies.

Wi
re
G

WireGuard offers secure, efficient VPN solutions for
network privacy and protection.

To secure network communications with state-of-the-art cryptography. lightweight
design, minimal attack surface, and dynamic routing capabilities to provide robust
VPN security, ensuring high-speed, low-latency connections for infrastructure.

https://www.ejbca.org/
https://www.keycloak.org/
https://www.elastic.co/elastic-stack/
https://prometheus.io/
https://grafana.com/
https://www.crossplane.io/
https://www.terraform.io/
https://www.ansible.com/
https://kubernetes.io/

ua
rd

https://www.wireguard.com/

nft
ab
les

nftables is a versatile packet filtering framework for fine-
grained network control.

For advanced network filtering and routing. Its expressive syntax and performance
optimisations help network administrators to efficiently manage packet filtering,
firewall rules, and network address translation (NAT).

M
od
Se
cu
rity

ModSecurity provides web application firewall (WAF)
protection against online threats.

To secure web applications with robust WAF capabilities. Its comprehensive rule
sets and real-time threat detection safeguard applications from web-based attacks,
ensuring data integrity and user trust.

Ce
ph

Ceph is a distributed storage system for scalable, reliable
data storage.

https://ceph.io/en/

For cost-effective, highly available storage solutions. Its distributed architecture,
erasure coding, and RADOS (Reliable Autonomic Distributed Object Store)
technology deliver scalable, fault-tolerant storage, making it ideal for cloud and data-
intensive workloads.

O
K
D
(O
pe
nS
hif
t)

OKD, the open-source version of OpenShift, offers
container orchestration and management.

https://www.okd.io/

To deploy, manage, and scale containerised applications with Kubernetes simplicity.
OKD's developer-friendly features, integrated CI/CD, and extensive ecosystem
enhance DevOps workflows and application delivery, without worrying about the
infrastructure.

O
pe
nS
ta
ck

OpenStack is an open-source cloud computing platform for
building private and public clouds.

https://www.openstack.org/

To create customisable, private cloud environments. The modular architecture
provides flexibility and control over cloud resources, enabling tailored cloud
solutions, reducing costs, and avoiding vendor lock-in.

Ku
be
less

Kubeless is a serverless framework for Kubernetes,
enabling function-as-a-service (FaaS).

Serverless application development over Kubernetes. Simplifies event-driven,
microservices-based architectures, providing rapid scaling and efficient resource
utilisation, perfect for modern application workloads. Suitable for providers who are
already running Kubernetes.

O
pe
nH
PC

OpenHPC provides a comprehensive high-performance
computing (HPC) stack for clusters.

To build and manage high-performance computing clusters. OpenHPC simplifies the
integration of HPC software components, ensuring optimised performance for
scientific and computational workloads.

O
pe
n
W
hisk

OpenWhisk is an open-source serverless platform with
support for multiple programming languages.

https://openwhisk.apache.org/

Serverless capabilities for flexible, event-driven application development.
OpenWhisk's language-agnostic approach simplifies serverless computing,
facilitating faster development and deployment of cloud-native functions.

eD
eli
ve
ry

eDelivery helps public administrations to exchange
electronic data and documents with other public
administrations, businesses and citizens at the national
level and across borders, in an interoperable, secure and
reliable way.

Part of Digital Building Blocks from European Commission.

eS
ig
na
ture

The DIGITAL eSignature Building Block allows public
administrations, businesses, and citizens to electronically
sign any document, anywhere in Europe, at any time, in
line with the eIDAS Regulation for e-signatures, e-seals
and related services offered by Trust Service Providers.

Part of Digital Building Blocks from European Commission.

eI
nv
oic
ing

The eInvoicing Building Block aims to promote the
successful uptake of electronic invoicing in Europe,
respecting the European standard on electronic invoicing
and Directive 2014/55/EU on electronic invoicing in public
procurement.

Part of Digital Building Blocks from European Commission.

eID The eID Building Block allows public administrations and
private service providers to easily extend the use of their
online services to citizens from other Member States, in
line with the eIDAS Regulation. In the digital age, public
administrations and businesses need to carry out fast,
secure electronic transactions and validate the identities of

Part of Digital Building Blocks from European Commission.

https://www.wireguard.com/
https://ceph.io/en/
https://www.okd.io/
https://www.openstack.org/
https://openwhisk.apache.org/

those involved with the same legal validity as traditional
paper processes. Electronic identification (eID) makes this
possible.

Ec
lip
se
E
DC

The EDC connector is a software installed by the
participating company or a platform thereby providing
technical access to the ecosystem. A connector can
consist of monolithic or self-contained software.

https://github.com/eclipse-edc/Connector

As an open source project hosted by the Eclipse Foundation, the EDC provides a
growing list of modules for many widely-deployed cloud environments (AWS, Azure,
GCP, OTC, etc.) "out-of-the-box" and can easily be extended for more customised
environments, while avoiding any intellectual property rights (IPR) headaches.

XF
S
C
Fe
de
rat
ed
Ca
tal
og
ue

The “Federated Catalogue” service includes a catalogue
where Gaia-X resources, asset items, and participants can
be found by potential consumers and end users.
Resources, asset items and participants are provided at
Gaia-X using self-descriptions.

https://gitlab.eclipse.org/eclipse/xfsc/cat

The reference implementation of organisational Federated Catalogue supporting SD
according to the Gaia-X Trustmodel.

piv
eau

piveau is a data management ecosystem for the public
sector.

https://www.piveau.de/en/

It provides components and tools to support the entire data processing chain from
harvesting, aggregation, provision, and use. It is highly extensible, focuses on open
standards and is designed for use in the cloud and reacts reliably and quickly to
unforeseen access peaks.

XF
S
C
O
CM

The “Organisation Credential Manager” service establishes
trust between the different participants within the
decentralised Gaia-X ecosystem. It includes all trust-
related functions required to manage and offer Gaia-X self-
descriptions in the W3C Verifiable Credential Format.

https://gitlab.eclipse.org/eclipse/xfsc/ocm

The reference implementation of organisational Credential Manager due to Gaia-X
Trustmodel.

XF
S
C
P
CM

The “Credential Manager” service enables Gaia-X users to
manage their credentials themselves. To do this, the user
needs secure storage (user wallet) and presentation
capabilities in the authentication and authorisation
processes.

https://gitlab.eclipse.org/eclipse/xfsc/pcm

The reference implementation of personal Credential Manager due to Gaia-X
Trustmodel.

Ap
ac
he
Sp
ark

Apache Spark is a multi-language engine for executing
data engineering, data science, and machine learning on
single-node machines or clusters.

https://spark.apache.org/

Apache Spark is highly adopted by thousands of companies. It also integrates with
all important frameworks on Data Science and Machine Learning, SQL Analytics
and BL and Storage and Infrastructure.

Gr
ea
t
Ex
pe
ct
ati
ons

A powerful platform to uphold data quality.

https://greatexpectations.io/

Great Expectations offer broad flexibility and control when creating data quality
tests. It also provides auto-updating documentation to ease reports of test suites
and results in collaborative environments.

M
ar
qu
ez
,
O
pe
nL
in
ea
ge

OpenLineage is an open platform for collection and
analysis of data lineage. It tracks metadata about datasets,
jobs, and runs, giving users the information required to
identify the root cause of complex issues and understand
the impact of changes.

https://openlineage.io/

OpenLineage contains an open standard for lineage data collection, a metadata
repository reference implementation (Marquez), libraries for common languages,
and integrations with data pipeline tools.

M
Lfl
ow

MLflow is an open-source platform to manage the ML
lifecycle, including experimentation, reproducibility,
deployment, and a central model registry.

https://mlflow.org/

MLflow offers several key components to access, evaluate, process and deploy
Large Language Models (LLM).

Ap
ac
he

JupyterLab is a web-based interactive development
environment for notebooks, code, and data.

https://github.com/eclipse-edc/Connector
https://gitlab.eclipse.org/eclipse/xfsc/cat
https://www.piveau.de/en/
https://gitlab.eclipse.org/eclipse/xfsc/ocm
https://gitlab.eclipse.org/eclipse/xfsc/pcm
https://spark.apache.org/
https://greatexpectations.io/
https://openlineage.io/
https://mlflow.org/

Ju
py
ter

https://jupyter.org/ Its flexible interface allows users to configure and arrange workflows in data
science, scientific computing, computational journalism, and machine learning. A
modular design invites extensions to expand and enrich functionality. This tool is
highly adopted in the data science community

Su
pe
rs
et

Apache Superset is an open-source modern data
exploration and visualisation platform.

https://superset.apache.org/

Superset is fast, lightweight, intuitive, and loaded with options that make it easy for
users of all skill sets to explore and visualise their data, from simple line charts to
highly detailed geospatial charts. It supports a wide range of data bases.

U
Vd
esk

https://www.uvdesk.com/en/ open-source ITSM tool selected as the tool best matching the tender requirements.

Th
eH
ive

https://thehive-project.org/ Same toolset as the one used for cert.eu and other governments institutions.

MI
SP

https://www.misp-project.org/ Same toolset as the one used for cert.eu and other governments institutions.

Sp
rin
g
Cl
ou
d
G
at
ew
ay

software components that act as an API Gateway.

https://spring.io/projects/spring-cloud-gateway

This component will manage the routing of API Requests to the several services that
compose the SMP middleware. It is easily extendible and configurable in order to
implement specific cross cutting concerns as security and the control of Access &
Usage policies.

Sp
rin
g
Cl
ou
d
Cir
cui
t
Br
ea
ker

Library implementing the Circuit Breaker pattern and other
HA patterns.

https://spring.io/projects/spring-cloud-circuitbreaker

Mitigates high response times and network errors, enhancing system reliability. It
implements the Circuit Breaker, Retry and Bulkhead patterns. It is useful for
communication inside and outside the SMP Agent perimeter.

W
eb
pa
ck
M
od
ul
e
Fe
de
rat
ion

Technology enabling the creation of micro-frontends. A common Application Shell will be implemented, that dynamically loads the several
autonomous Front End modules. Each module can be mapped to a specific micro-
service and developed independently by the same Team that is in charge of it,
increasing the speed of development of distributed and scalable applications.

Ar
ub
a
Co
ns
en
t
M
an
ag
e
m
ent

Consent management service. It manages consent given by Data Providers to the Consumers. It binds consents to
specific versions of a legal text. Data Providers can revoke their consent at any time.
Specific events are raised for every notable change in the system, that can be easily
reviewed and audited.

Sp
rin
g
Cl
ou
d
Co
nfig

https://spring.io/projects/spring-cloud-config

https://jupyter.org/
https://superset.apache.org/
https://www.uvdesk.com/en/
https://thehive-project.org/
https://www.misp-project.org/
https://spring.io/projects/spring-cloud-gateway
https://spring.io/projects/spring-cloud-circuitbreaker
https://spring.io/projects/spring-cloud-config

S
wa
gg
er

https://swagger.io/ The de facto standard of documentation for REST APIs.

Da
ta
M
as
hu
p
Ed
ito
r
(E
ng
op
en
so
ur
ce)

The mission of the Data Mashup Editor is to develop a
powerful and intuitive graphical tool that simplifies the
process of harmonising data from diverse sources,
leveraging cutting-edge technologies and intelligent data
integration techniques. The Data Mashup Editor is
dedicated to ensuring data accessibility, usability, and
accuracy, enabling informed decision-making across
industries and domains and unlocking the true value of
data assets.

The Data Mashup Editor was chosen as one of the tools for data processing building
block and data sharing building block due to its ability to seamlessly handle both
real-time and batch data streams, while redirecting the output to various entities
adopting different technologies and protocols simultaneously. Its internal
architecture makes it highly suitable for cloud deployment, ensuring optimal
performance and distributed executions. Additionally, it offers an intuitive user
experience through its graphical interface, making it easy for users to utilise the tool
effectively.

Ru
le
M
an
ag
er
(E
ng
op
en
so
ur
ce)

The Digital Enabler Rule Manager is a powerful tool
designed for managing trigger rules and automated
responses based on specific data values within your
platform. This tool offers a user-friendly guided wizard for
defining and implementing rules for data processing within
the platform.

The Rule Manager was chosen as one of the tools for ata processing building block
and data sharing building block due to its capability to create rules of varying
complexity based on the data within the system and this gives the possibility of
adding a monitoring layer in the processing steps. It integrates seamlessly with the
Data Mashup Editor, providing a comprehensive solution for data manipulation. Its
internal architecture is well-suited for cloud deployment, ensuring excellent
performance and distributed executions. Furthermore, its graphical interface
provides users with an intuitive experience, simplifying the process of effectively
utilising the tool.

Air
flow

Apache Airflow is an open-source platform for developing,
scheduling, and monitoring batch-oriented workflows.

https://airflow.apache.org/

Airflow was chosen as the data orchestration component, in the supporting data
services building block, due to its exceptional flexibility, allowing the installation of
plugins as needed. Moreover, it seamlessly integrates with cloud architectures,
providing excellent support for distributed execution in a microservices environment.

Simpl-Open Technology Choices

The table below presents the list of Open-Source Software used by Simpl-Open (MVP).

Initiative and Recognised Business Open-Source

Capability Sub-Capability Tool Description URL Rationale Additional Considerations

Discovery Metadata SD (GX-
Trustfra
mework)

Metadata of Participants and service offerings (App, Data, Infra)
described as GAIA-X Self-Description using an ontology. The SD
uses a linked data format and allows the definition of constraints
and quality rules.

https://ga
ia-x.
gitlab.io
/policy-
rules-
committe
e/trust-
framewor
k/

Licence:
CreativeCo
mmons
Community
Support:
Gaia-X
Documentati
on
Available:
here
Extensibility:
yes
Adoption by
Business:

LightGaia-x
house,
all data
space
initiatives
claiming to
be GAIA-X
compliant.

 highly adopted in data space initiatives. Best choice to Ontology
convince participants to provide self-descriptions in this way. It
can be easily enhanced with sectoral specific parameters.

Discovery Metadata XFSC
SD
Tooling

Tooling to create self descriptions describe the service offerings
(Data, App, Infrastructure).

https://git
lab.
eclipse.
org
/eclipse
/xfsc
/self-
descripti
on-
tooling

Licence: Ap
ache 2.0
Community
Support: XF
SC
Documentati
on
Available: yes
Extensibility:
yes

No other FOSS tool available to create customised SD.
Schemas can be created via L inkML Generator Tool

Fully customisable SD definitions possible.

https://swagger.io/
https://airflow.apache.org/
https://gaia-x.gitlab.io/policy-rules-committee/trust-framework/
https://gaia-x.gitlab.io/policy-rules-committee/trust-framework/
https://gaia-x.gitlab.io/policy-rules-committee/trust-framework/
https://gaia-x.gitlab.io/policy-rules-committee/trust-framework/
https://gaia-x.gitlab.io/policy-rules-committee/trust-framework/
https://gaia-x.gitlab.io/policy-rules-committee/trust-framework/
https://gaia-x.gitlab.io/policy-rules-committee/trust-framework/
https://gaia-x.gitlab.io/policy-rules-committee/trust-framework/
https://gaia-x.gitlab.io/policy-rules-committee/trust-framework/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://gaia-x.gitlab.io/policy-rules-committee/trust-framework/
https://gaia-x.eu/who-we-are/lighthouse-projects/
https://gaia-x.gitlab.io/gaia-x-community/gaia-x-self-descriptions/core/core.html
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling
https://projects.eclipse.org/license/Apache-2.0
https://projects.eclipse.org/license/Apache-2.0
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling/sd-creation-wizard-frontend
https://linkml.io/linkml/generators/index.html

Adoption by
Business: Tr

 (ustedCloud
)Spec

Discovery Catalogue at
Governance
Authority

XFSC
Federate
d
Catalogue

Federated Catalogue providing Discovery capability to look up on
Self Descriptions of service offerings (Data, App, Infrastructure).

https://git
lab.
eclipse.
org
/eclipse
/xfsc/cat

Licence: Ap
ache 2.0
Community
Support: XF
SC
Documentati
on
Available:

, Web PDF
Extensibility:
yes
Adoption by
Business:
Gaia-x
Lighthouse

The only implementation of a FOSS federated catalogue
supporting SD. i.e. validation of SD when published and
searching for SD providing an internal search engine. It also
already support semantic validation. In addition the search
engine is based on NoSQL which provides the base for
knowledge search needed for M2M use cases.

CKAN is using PostgresSQL as database. Hence it is not well
prepared for ontology searches. There are plugins available to
enable limited Ontology search capabilities like SparQL
extensions. However, they do not scale and will fail on complex
knowledge graph search as needed for ML algorithms.

Either a PropertyGraph Database like Neo4J or an RDF-Triple
Storage like Apache Fuseki Jena, Virtuoso etc. is needed.

Discovery Credential Manager
at Provider

XFSC
OCM

The credential manager to store the Self Descriptions on
organisational side. It also covers signing of Self Descriptions
created by a provider, revoking a credential, verification and
retrieval of credentials as microservices.

https://git
lab.
eclipse.
org
/eclipse
/xfsc
/organisa
tional-
credentia
l-
manager
-w-stack

Licence: Ap
ache 2.0
Community
Support: XF
SC
Documentati
on
Available:
Web
Extensibility:
yes
Adoption by
Business:

This is created as part of XFSC matching the needs best for
SD. Can be easily replaced with any other wallet solution
providing the same protocols in exchanging credentials (OIDC4VP
and).OIDC4VC

Access control
& trust

Authentication
Provider

Keycloak Open-Source Identity and Access Management

Add authentication to applications and secure services with
minimum effort.
No need to deal with storing users or authenticating users.

Keycloak provides user federation, strong authentication, user
management, fine-grained authorisation, and more.

https://w
ww.
keycloak.
org/

License: Ap
ache 2.0
Community
Support:
Huge
community
based upon
years of
being active
(21K stars
on girthub)ht
tps://www.
keycloak.org
/community
Documentati
on
Available:
Documentati
on is wide
and focus
on every
aspects of
the tool http
s://www.
keycloak.org
/documentat
ion
Extensibility:
yes natively
and through
REST API(h
ttps://www.
keycloak.org
/docs/latest
/server_dev
elopment

)/index.html
Adoption by
Business:
Spread
adoption
around the
world

An on-premise solution that is a de facto standard and offers a
wide-range set of features and a native(java) extensible
interface.

Provisioning VM/Container
/Storage
provisioning

Crosspla
ne

Crossplane is an open-source Kubernetes add-on that allows to
define and automate the infrastructure using Kubernetes-style
configuration files. It extends the Kubernetes API to allow to
provision and manage cloud resources and services from various
providers, such as AWS, GCP, Azure, and more, in a unified
manner.

https://w
ww.
crosspla
ne.io/

License: Ap
ache 2.0
Community
Support:
Huge
community
based upon
years of
being active
(9.6K stars
on girthub)ht
tps://www.
crossplane.
io
/community
Documentati
on
Available: ht
tps://docs.
crossplane.
io/
Extensibility:
Yes, highly
extensible
with support
for custom
resource
definitions

Multi-cloud environment operation.

Crossplane simplifies infrastructure management by bringing
the benefits of the Kubernetes declarative model to cloud
provisioning. By using Crossplane, teams can leverage the
familiar Kubernetes tools and workflows to manage
infrastructure alongside their applications, leading to a more
consistent, scalable, and efficient infrastructure management
process.

Crossplane is favored over Terraform (https://blog.crossplane.io
), also because of more permissive /crossplane-vs-terraform/

license.

https://www.trusted-cloud.de/
https://www.trusted-cloud.de/
https://www.trusted-cloud.de/sites/default/files/trusted_cloud_kriterienkatalog_v2_0_en_final_1.pdf
https://gitlab.eclipse.org/eclipse/xfsc/cat
https://gitlab.eclipse.org/eclipse/xfsc/cat
https://gitlab.eclipse.org/eclipse/xfsc/cat
https://gitlab.eclipse.org/eclipse/xfsc/cat
https://gitlab.eclipse.org/eclipse/xfsc/cat
https://gitlab.eclipse.org/eclipse/xfsc/cat
https://projects.eclipse.org/license/Apache-2.0
https://projects.eclipse.org/license/Apache-2.0
https://gitlab.eclipse.org/eclipse/xfsc/cat
https://gitlab.eclipse.org/eclipse/xfsc/cat
https://gaia-x.gitlab.io/data-infrastructure-federation-services/cat/architecture-document/architecture/catalogue-architecture.html
https://gitlab.com/gaia-x/data-infrastructure-federation-services/cat/architecture-document/-/jobs/artifacts/main/raw/build/pdf/architecture/catalogue-architecture.pdf?job=generate_pdf
https://gaia-x.eu/who-we-are/lighthouse-projects/
https://gaia-x.eu/who-we-are/lighthouse-projects/
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack
https://projects.eclipse.org/license/Apache-2.0
https://projects.eclipse.org/license/Apache-2.0
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack/architecture-documentation
https://openid.net/specs/openid-4-verifiable-presentations-1_0.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0.html
https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html
https://www.keycloak.org/
https://www.keycloak.org/
https://www.keycloak.org/
https://www.keycloak.org/
https://projects.eclipse.org/license/Apache-2.0
https://projects.eclipse.org/license/Apache-2.0
https://www.keycloak.org/community
https://www.keycloak.org/community
https://www.keycloak.org/community
https://www.keycloak.org/community
https://www.keycloak.org/documentation
https://www.keycloak.org/documentation
https://www.keycloak.org/documentation
https://www.keycloak.org/documentation
https://www.keycloak.org/documentation
https://www.keycloak.org/docs/latest/server_development/index.html
https://www.keycloak.org/docs/latest/server_development/index.html
https://www.keycloak.org/docs/latest/server_development/index.html
https://www.keycloak.org/docs/latest/server_development/index.html
https://www.keycloak.org/docs/latest/server_development/index.html
https://www.keycloak.org/docs/latest/server_development/index.html
https://www.keycloak.org/docs/latest/server_development/index.html
https://www.crossplane.io/
https://www.crossplane.io/
https://www.crossplane.io/
https://www.crossplane.io/
https://github.com/crossplane/crossplane?tab=Apache-2.0-1-ov-file#readme
https://github.com/crossplane/crossplane?tab=Apache-2.0-1-ov-file#readme
https://www.crossplane.io/community
https://www.crossplane.io/community
https://www.crossplane.io/community
https://www.crossplane.io/community
https://www.crossplane.io/community
https://docs.crossplane.io/
https://docs.crossplane.io/
https://docs.crossplane.io/
https://docs.crossplane.io/
https://blog.crossplane.io/crossplane-vs-terraform/
https://blog.crossplane.io/crossplane-vs-terraform/

(CRDs) and
integration
with various
cloud
providers
and on-
premises
environment
s.
Adoption by
Business:
Increasingly
adopted by
organisation
s seeking
Kubernetes-
native
solutions for
infrastructur
e
automation
and
application
managemen
t.

Provisioning VM/Container
/Storage
provisioning

ArgoCD ArgoCD is a declarative, GitOps continuous delivery tool for
Kubernetes. It is designed to simplify the process of deploying and
managing applications on Kubernetes clusters. ArgoCD uses a
GitOps approach, which means it uses Git repositories as the
source of truth for application configurations.

https://ar
go-cd.
readthed
ocs.io/en
/stable/

License:
Apache 2.0
Community
Support:
Large and
active
community
with many
contributors
and users
Documentati
on
Available:
Extensive
documentati
on
available,
including
user
guides, API
references,
and tutorials
Extensibility:
Highly
extensible
with support
for custom
plugins and
integrations
Adoption by
Business:
Widely
adopted by
businesses
and
organization
s, including
many
Fortune 500
companies

ArgoCD is selected for its ability to simplify and automate the
deployment and management of Kubernetes applications. Its
declarative, GitOps approach ensures consistency and
reproducibility across environments, while features like
automated rollouts and rollbacks enhance application
availability and resilience. By leveraging ArgoCD, it's possible to
set up continuous delivery pipeline and reduce the complexity
associated with manual configuration and deployment
processes.

Provisioning Post Configuration /
Application
Deployment

Cloud-init Cloud-init is a popular tool for automating the initialization and
configuration of cloud instances. It is designed to simplify the
process of deploying and configuring cloud instances, and is widely
used in cloud computing environments.

https://cl
oud-init.
io/

License:
Apache 2.0
Community
Support:
Moderate
community
support with
many users
and
contributors
Documentati
on
Available:
Extensive
documentati
on
available,
including
user
guides,
configuratio
n examples,
and
troubleshoot
ing guides
Extensibility:
Highly
extensible
with support
for custom
scripts and
plugins
Adoption by
Business:
Widely
adopted by
businesses
and
organization
s,
particularly
in the cloud
computing
and

Cloud-init is selected for its ability to automate the initialization
and configuration of cloud instances, as well as run post-
provisioning tasks such as deploying or installing applications,
automated network configuration, storage setup, and security
hardening. Its modular and customizable approach ensures that
instances are properly configured and secured, reducing the
risk of errors and improving overall reliability.

https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/
https://cloud-init.io/
https://cloud-init.io/
https://cloud-init.io/

DevOps
spaces

Provisioning Storage
(Repository)

Gitea Gitea is a lightweight, open-source, and highly extensible repository
management tool that provides a simple and intuitive way to
manage code repositories. It offers a web-based interface for
creating, managing, and organizing code repositories, and provides
features such as collaboration, version control, and issue tracking.

https://ab
out.gitea.
com/

License: MIT
License
Community
Support: Large
and active
community with
many contributors
and users
Documentation
Available:
Extensive
documentation
available, including
user guides, API
references, and
tutorials
Extensibility:
Highly extensible
with support for
custom plugins
and integrations
Adoption by
Business: Widely
adopted by
businesses and
organizations,
particularly in the
open-source and
developer
communities

Gitea is chosen for its ability to provide a lightweight, flexible,
and highly extensible repository management solution. Its ease
of use, scalability, and customizability make it an ideal tool for
managing code repositories.

Data Exchange Data Exchange
Service

EDC The data exchange service implementing the negotiation protocol
(data space protocol).

https://pr
ojects.
eclipse.
org
/projects
/technolo
gy.edc

Licence: Ap
ache 2.0
Community
Support: Tr
actus-X and

.EDC
Documentati
on
Available:

 Tractus-X
and EDC
Extensibility:
well
structured
interfaces
to
customise
component
Adoption by
Business:

 Catena-X, E
, ona-X

several
other data
initiatives
using forks
of it. Known

 of Friends
EDC.

Can be replaced with any other IDS connector implementing the
 and using expressions for IDSA Dataspace Protocol ODRL

policy . The EDC connector is chosen because it has a good
documentation, provides good interfaces and can be easily
customised. Second there are two joined active communities to
drive the development: and .Tractus-X EDC

In addition, the first IDS connector the IDSA certification passing
was the TSI connector based on EDC.

Also EDC is the only available IDS connector which has already
implemented the dataspace protocol. Other initiatives will follow.

Monitoring,

Logging,

Reporting,

Audit

Monitoring and
Logging

ELK
(Elastic,
Logstash
, Kibana)

Reliably and securely take data from any source, in any format,
then search, analyze, and visualize.

https://w
ww.
elastic.
co/

License: EL
v2 / SSPL
Community
Support:
Largest
community
in the
industry http
s://www.
elastic.co/fr
/community
Documentati
on
Available:
Yes https://
www.elastic.
co/docs
Extensibility:
yes
Adoption by
Business:
Most
adopted
open
sources
logging
/monitoring
/reporting
/auditing
stack in the
world.

The ELK stack is an industry standard for log management and
data analysis due to its scalability and powerful features.
Elasticsearch handles large volumes of data with real-time
search and analytics, Logstash processes and ingests data
from various sources, and Kibana provides intuitive
visualizations and reporting. Being open-source, it benefits from
a large community, continuous improvements, and extensive
plugins. Security features like TLS encryption, role-based
access control, and audit logging ensure data protection,
making ELK a reliable and versatile solution for diverse use
cases.

Access control
& trust

Commons HashiCor
p Vault

Used by Keycloak, EJBCA, Spring Cloud Gateway, and when
access to stored credentials is needed by a Java Backend.

https://w
ww.
vaultproj
ect.io/

License: Bu
siness
Source
License
(BSL) for
Open
Source
Community
Support:
High, with
active
forums and
GitHub

HashiCorp Vault is a secrets management and encryption
platform that securely stores, manages, and encrypts sensitive
data such as passwords, API keys, and certificates. It provides
secure access, auditing, and revocation of secrets across
distributed infrastructure, applications, and services, enabling
secure development, deployment, and operation of modern
systems.

https://about.gitea.com/
https://about.gitea.com/
https://about.gitea.com/
https://projects.eclipse.org/projects/technology.edc
https://projects.eclipse.org/projects/technology.edc
https://projects.eclipse.org/projects/technology.edc
https://projects.eclipse.org/projects/technology.edc
https://projects.eclipse.org/projects/technology.edc
https://projects.eclipse.org/projects/technology.edc
https://projects.eclipse.org/projects/technology.edc
https://projects.eclipse.org/license/Apache-2.0
https://projects.eclipse.org/license/Apache-2.0
https://github.com/eclipse-edc/Connector
https://github.com/eclipse-tractusx/tractusx-edc/tree/main/docs
https://github.com/eclipse-edc/Connector/tree/main/docs/developer
https://catena-x.net/
https://catena-x.net/
https://eona-x.eu/
https://eona-x.eu/
https://internationaldataspaces.org/data-connector-report/
https://eclipse-edc.github.io/docs/#/documentation/KNOWN_FRIENDS
https://eclipse-edc.github.io/docs/#/documentation/KNOWN_FRIENDS
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol
https://www.w3.org/TR/odrl-model/
https://github.com/eclipse-tractusx/tractusx-edc
https://github.com/eclipse-edc/Connector
https://internationaldataspaces.org/t-systems-and-idsa-achieve-milestone-for-data-spaces-first-certification-of-a-connector-promotes-standardization-and-interoperability/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/fr/community
https://www.elastic.co/fr/community
https://www.elastic.co/fr/community
https://www.elastic.co/fr/community
https://www.elastic.co/docs
https://www.elastic.co/docs
https://www.elastic.co/docs
https://www.vaultproject.io/
https://www.vaultproject.io/
https://www.vaultproject.io/
https://www.vaultproject.io/
https://github.com/hashicorp/vault/blob/main/LICENSE
https://github.com/hashicorp/vault/blob/main/LICENSE
https://github.com/hashicorp/vault/blob/main/LICENSE
https://github.com/hashicorp/vault/blob/main/LICENSE
https://github.com/hashicorp/vault/blob/main/LICENSE
https://github.com/hashicorp/vault/blob/main/LICENSE
https://github.com/hashicorp/vault/blob/main/LICENSE

discussions.
https://discu
ss.
hashicorp.
com/c/vault/
Documentati
on
Available:
Yes,
extensive
documentati
on covering
all aspects
of setup,
usage, and
integration.
https://devel
oper.
hashicorp.
com/vault
/docs
Extensibility:
Yes,
supports
plugins and
integrations
with major
cloud
platforms
and
authenticati
on systems.
Adoption by
Business: W
idely
adopted
globally,
especially
in industries
with strict
compliance
and security
requirement
s.

Access control
& trust

Commons MinIO MinIO is a high-performance, S3 compatible object store. It is built
for
large scale AI/ML, data lake and database workloads. It is software-
defined
and runs on any cloud or on-premises infrastructure.

https://mi
n.io/ License:

GNU AGPL
v3
Community
Support:
High, with
active
GitHub
issues, a
strong
community
forum, and
Slack
channels. htt
ps://slack.
min.io/
Documentati
on
Available:
Yes,
comprehens
ive and
detailed
documentati
on covering
deployment,
configuratio
n, and API
usage. https
://min.io
/docs/
Extensibility:
Yes,
supports
integrations
with
multiple
cloud
platforms,
Kubernetes,
and third-
party tools
for storage
and
analytics.
Adoption by
Business:
Growing
adoption
worldwide,
particularly
in data-
driven
industries
leveraging
object
storage for
modern
workloads
like AI/ML,
big data,
and cloud-
native
applications.

 is an open-source, Amazon S3-compatible, distributed Min.io
object storage server for cloud-native and edge computing
applications. It provides a highly available, scalable, and
performant storage solution with features like erasure coding,
bitrot protection, and encryption, making it suitable for a wide
range of use cases, from dev to production.

Access control
& trust

Commons PostgreS
QL

used by Keycloak, EJBCA, Spring Cloud Gateway, and when a DB
is needed by a Java Backend

https://w
ww.

The World's Most Advanced Open-Source Relational Database

https://min.io/
https://min.io/
http://Min.io
https://www.postgresql.org/
https://www.postgresql.org/

postgres
ql.org/

License: Po
stgreSQL
License
Community
Support:
Very high htt
ps://www.
postgresql.
org
/community/
Documentati
on
Available:
Yes,
documentati
on is wide
and focuses
on every
aspect of
the
Database htt
ps://www.
postgresql.
org/docs/
Extensibility:
yes
Adoption by
Business: S
pread
adoption
around the
world

Access control
& trust

Common

Identity provider

EJBCA One of the world's most popular PKIs, EJBCA gives you time-
proven flexibility and robustness. Unlike other open-source
certificate authority and PKI solutions, EJBCA is platform-
independent and can be scaled up and down to match your needs.

https://w
ww.
ejbca.
org/

License: LG
PL-2.1
Community
Support:
Huge
community
based on
the mailing
list, github,
forums, and
slack
channel
Documentati
on
Available:
Documentati
on is wide
and helps
understand
how to use
and interact
with the tool
https://docs.
keyfactor.
com/ejbca
/latest/
Extensibility:
yes using
REST API
Adoption by
Business:

The most mature (23 years), used, and rich in features, java-
based PKI solution in the open-source panorama.

Access control
& trust

Commons

Authorisation

Spring
Cloud
Gateway

It is a spring project that provides libraries for building an API
Gateway on top of Spring WebFlux or Spring WebMVC. Spring
Cloud Gateway aims to provide a simple, yet effective way to route
to APIs and provide cross cutting concerns to them such as:
security, monitoring/metrics, and resiliency.

https://sp
ring.io
/projects
/spring-
cloud-
gateway

License: Ap
ache 2.0
Community
Support:
Huge
community
based upon
the spring
framework
community h
ttps://spring.
io
/community
Documentati
on
Available:
Documentati
on is wide
and focuses
on every
aspect of
the
framework
 https://docs.
spring.io
/spring-
cloud-
gateway
/reference/
Extensibility:
yes very
high
Adoption by
Business:
Spread
adoption
around the
world

Based upon the best java-based backed framework in the world
(spring) it also offers a reactive implementation that ensures the
maximum level of resiliency and extensibility.

Message
Broker

Commons Apache
Kafka

Apache Kafka is an open-source distributed event streaming
platform designed for building real-time data pipelines and
streaming applications. It serves as a high-throughput, fault-
tolerant, and horizontally scalable platform that can handle large
volumes of data and stream events in real-time. Kafka uses a
publish-subscribe model and durable storage for storing and

https://ka
fka.
apache.
org/

License:
Apache 2.0
Community
Support:
Huge

Apache Kafka's role as a message broker offers several
advantages for handling asynchronous events and message-
based communication within distributed systems:
Scalability: Kafka's distributed architecture allows for horizontal
scaling, enabling high throughput and low latency message
processing even under heavy loads.

https://www.postgresql.org/
https://www.postgresql.org/
https://opensource.org/license/postgresql
https://opensource.org/license/postgresql
https://opensource.org/license/postgresql
https://www.postgresql.org/community/
https://www.postgresql.org/community/
https://www.postgresql.org/community/
https://www.postgresql.org/community/
https://www.postgresql.org/community/
https://www.postgresql.org/docs/
https://www.postgresql.org/docs/
https://www.postgresql.org/docs/
https://www.postgresql.org/docs/
https://www.ejbca.org/
https://www.ejbca.org/
https://www.ejbca.org/
https://www.ejbca.org/
https://github.com/Keyfactor/ejbca-ce?tab=LGPL-2.1-1-ov-file
https://github.com/Keyfactor/ejbca-ce?tab=LGPL-2.1-1-ov-file
https://docs.keyfactor.com/ejbca/latest/
https://docs.keyfactor.com/ejbca/latest/
https://docs.keyfactor.com/ejbca/latest/
https://docs.keyfactor.com/ejbca/latest/
https://spring.io/projects/spring-cloud-gateway
https://spring.io/projects/spring-cloud-gateway
https://spring.io/projects/spring-cloud-gateway
https://spring.io/projects/spring-cloud-gateway
https://spring.io/projects/spring-cloud-gateway
https://spring.io/projects/spring-cloud-gateway
https://projects.eclipse.org/license/Apache-2.0
https://projects.eclipse.org/license/Apache-2.0
https://spring.io/community
https://spring.io/community
https://spring.io/community
https://spring.io/community
https://docs.spring.io/spring-cloud-gateway/reference/
https://docs.spring.io/spring-cloud-gateway/reference/
https://docs.spring.io/spring-cloud-gateway/reference/
https://docs.spring.io/spring-cloud-gateway/reference/
https://docs.spring.io/spring-cloud-gateway/reference/
https://docs.spring.io/spring-cloud-gateway/reference/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/

processing streams of records.
Message Brokerage: In addition to its streaming capabilities, Kafka
can effectively serve as a message broker, facilitating
communication between different components of a system through
the asynchronous exchange of messages. It provides features like
message queueing, topic partitioning, and consumer group
management, making it suitable for implementing a decoupled,
event-driven architecture.

community
(29K stars
on girthub) h
ttps://kafka.
apache.org
/project
Documentati
on
Available:
yes - https://
kafka.
apache.org
/documentat
ion/
Extensibility:
yes
Adoption by
Business:
Spread
adoption
around the
world

Durability: Messages are stored durably in Kafka, providing fault
tolerance and preventing data loss in case of system failures.
Reliability: Kafka ensures reliable delivery of messages to
consumers through features like message retention and
configurable acknowledgment settings.
Decoupling: By decoupling producers and consumers through
topics, Kafka enables loosely coupled communication between
system components, improving flexibility and resilience.
Real-time Processing: Kafka's ability to process and react to
events in real-time makes it suitable for use cases requiring low-
latency messaging, stream processing, and complex event-
driven architectures.

Cache Commons Redis Redis Cache is an in-memory data structure store widely used as a
caching solution to enhance the performance of applications. By
storing frequently accessed data in memory, Redis enables faster
data retrieval compared to disk-based databases. It supports a
variety of data types such as strings, lists, sets, and hashes,
making it versatile for different caching needs. Redis is known for
its high throughput, low latency, and scalability, often used for
caching web pages, session management, real-time analytics, and
message brokering. It also supports persistence, replication, and
automatic failover for reliability.

https://re
dis.io/ License:

Redis
Source
Available
License 2.0
(RSALv2)
Community
Support:
high
Documentati
on
Available:
high
Extensibility:
yes
Adoption by
Business:
Spread
adoption
around the
world

Redis Cache offers several advantages for improving
application performance and scalability:

Performance As an in-memory data store, Redis delivers :
extremely low-latency and high-throughput data retrieval,
significantly boosting application speed.

Scalability Redis supports horizontal scaling through clustering :
and partitioning, allowing it to handle large datasets and heavy
traffic efficiently.

Flexibility: With support for various data structures such as
strings, lists, sets, and hashes, Redis can handle diverse
caching and real-time data processing use cases.

Persistence and Reliability: Redis offers optional persistence
mechanisms like snapshots and append-only files, ensuring
durability, while replication and automatic failover provide high
availability and fault tolerance.

Integration: Redis integrates easily with various programming
languages and frameworks, making it a popular choice for
developers seeking an efficient, easy-to-deploy caching solution.

The following table links the OSS components to their architecture documentation and installation guide:

OSS Architecture Documentation Installation Guide

XFSC Signer https://gitlab.eclipse.org/eclipse/xfsc/tsa/signer https://gitlab.eclipse.org/eclipse/xfsc/tsa/signer/-/blob
/main/deployment/helm/README.md

XFSC
Federated
Catalogue

https://gaia-x.gitlab.io/data-infrastructure-federation-services/cat
/architecture-document/architecture/catalogue-architecture.html

https://gitlab.eclipse.org/eclipse/xfsc/cat/fc-service/-/wikis
/Installation%20&%20Configuration%20Guide

HashiCorp Vault https://developer.hashicorp.com/vault/docs/internals/architecture https://developer.hashicorp.com/vault/docs/install

Keycloak https://www.keycloak.org/docs/latest/authorization_services/index.
html#_overview_architecture

https://www.keycloak.org/guides

EJBCA https://doc.primekey.com/ejbca/ejbca-introduction/ejbca-architecture
/internal-architecture

https://docs.keyfactor.com/ejbca/latest/ejbca-installation

Crossplane https://docs.google.com/document/d
/1whncqdUeU2cATGEJhHvzXWC9xdK29Er45NJeoemxebo
/edit#heading=h.annq8ww6da48

https://docs.crossplane.io/latest/software/install/

ArgoCD https://argo-cd.readthedocs.io/en/stable/operator-manual/architecture/ https://argo-cd.readthedocs.io/en/stable/operator-manual
/installation/

Cloud-init https://cloudinit.readthedocs.io/en/latest/ https://cloudinit.readthedocs.io/en/latest/index.html

Gitea https://docs.gitea.com/category/installation https://docs.gitea.com/

Apache Kafka https://kafka.apache.org/documentation/ https://kafka.apache.org/quickstart

Redis https://redis.io/learn/howtos/quick-start https://redis.io/docs/latest/operate/oss_and_stack/install
/install-redis/

SD (GX-Trust
Framework)

N/A https://code.europa.eu/simpl/simpl-open/development
/data1/sdtooling-validation-api-be#installation

XFSC SD
Tooling

https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling https://gitlab.eclipse.org/eclipse/xfsc/self-description-
tooling/sd-creation-wizard-api

XFSC OCM https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-
w-stack/architecture-documentation

https://gitlab.eclipse.org/eclipse/xfsc/organisational-
credential-manager-w-stack/deployment

https://kafka.apache.org/project
https://kafka.apache.org/project
https://kafka.apache.org/project
https://kafka.apache.org/project
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://redis.io/docs/latest/operate/oss_and_stack/
https://redis.io/docs/latest/operate/oss_and_stack/
https://gitlab.eclipse.org/eclipse/xfsc/tsa/signer
https://gitlab.eclipse.org/eclipse/xfsc/tsa/signer/-/blob/main/deployment/helm/README.md
https://gitlab.eclipse.org/eclipse/xfsc/tsa/signer/-/blob/main/deployment/helm/README.md
https://gaia-x.gitlab.io/data-infrastructure-federation-services/cat/architecture-document/architecture/catalogue-architecture.html
https://gaia-x.gitlab.io/data-infrastructure-federation-services/cat/architecture-document/architecture/catalogue-architecture.html
https://gitlab.eclipse.org/eclipse/xfsc/cat/fc-service/-/wikis/Installation%20&%20Configuration%20Guide
https://gitlab.eclipse.org/eclipse/xfsc/cat/fc-service/-/wikis/Installation%20&%20Configuration%20Guide
https://developer.hashicorp.com/vault/docs/internals/architecture
https://developer.hashicorp.com/vault/docs/install
https://www.keycloak.org/docs/latest/authorization_services/index.html#_overview_architecture
https://www.keycloak.org/docs/latest/authorization_services/index.html#_overview_architecture
https://www.keycloak.org/guides
https://doc.primekey.com/ejbca/ejbca-introduction/ejbca-architecture/internal-architecture
https://doc.primekey.com/ejbca/ejbca-introduction/ejbca-architecture/internal-architecture
https://docs.keyfactor.com/ejbca/latest/ejbca-installation
https://docs.google.com/document/d/1whncqdUeU2cATGEJhHvzXWC9xdK29Er45NJeoemxebo/edit#heading=h.annq8ww6da48
https://docs.google.com/document/d/1whncqdUeU2cATGEJhHvzXWC9xdK29Er45NJeoemxebo/edit#heading=h.annq8ww6da48
https://docs.google.com/document/d/1whncqdUeU2cATGEJhHvzXWC9xdK29Er45NJeoemxebo/edit#heading=h.annq8ww6da48
https://docs.crossplane.io/latest/software/install/
https://argo-cd.readthedocs.io/en/stable/operator-manual/architecture/
https://argo-cd.readthedocs.io/en/stable/operator-manual/installation/
https://argo-cd.readthedocs.io/en/stable/operator-manual/installation/
https://cloudinit.readthedocs.io/en/latest/
https://cloudinit.readthedocs.io/en/latest/index.html
https://docs.gitea.com/category/installation
https://docs.gitea.com/
https://kafka.apache.org/documentation/
https://kafka.apache.org/quickstart
https://redis.io/learn/howtos/quick-start
https://redis.io/docs/latest/operate/oss_and_stack/install/install-redis/
https://redis.io/docs/latest/operate/oss_and_stack/install/install-redis/
https://code.europa.eu/simpl/simpl-open/development/data1/sdtooling-validation-api-be#installation
https://code.europa.eu/simpl/simpl-open/development/data1/sdtooling-validation-api-be#installation
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling/sd-creation-wizard-api
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling/sd-creation-wizard-api
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack/architecture-documentation
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack/architecture-documentation
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack/deployment
https://gitlab.eclipse.org/eclipse/xfsc/organisational-credential-manager-w-stack/deployment

EDC https://eclipse-edc.github.io/documentation/ https://eclipse-edc.github.io/documentation/for-adopters
/distributions-deployment-operations/

ELK (Elastic,
Logstash,
Kibana)

https://www.elastic.co/docs https://www.elastic.co/guide/en/elasticsearch/reference
/current/getting-started.html

MinIO https://min.io/docs/minio/container/operations/concepts/architecture.html https://min.io/docs/minio/container/operations/installation.
html

PostgreSQL https://www.postgresql.org/docs/current/tutorial-arch.html https://www.postgresql.org/docs/current/install-binaries.
html

Spring Cloud
Gateway

https://cloud.spring.io/spring-cloud-gateway/reference/html/#gateway-
how-it-works

https://cloud.spring.io/spring-cloud-gateway/reference
/html/

Detailed Technical Specifications

This presents technical implementation details that are particularly relevant for contributing to Simpl-Open and/or implementing it in a data space.section

Identification, Authentication & Authorisation

The IAA 2-Tier approach in Simpl-Open is already described in the Data Spaces Concepts section of the Simpl-Open High Level Overview.

Because of the 2-Tier approach, the components are grouped into Tier 1 and Tier 2.

Tier 1 IAA Components

Tier 1 is meant to be under the control of the governance of the organization that became a Participant of a Dataspace, its components are local to the
participant agent and are dedicated to enabling and controlling the access of the organization's end users to the resources/functionalities offered by the
Simpl-Open agent and are:

Identification and Authentication

The component responsible for identification and authentication is the realised using an extended version of KeycloakTier 1 Authentication Provider
(OpenID Connect Identity Provider) integrated with the component.User & Roles

User & Roles

The User and Roles component is used to define roles used by the , manage roles assignment of Authorisation Tier 1 Tier 1 Authentication Provider
end users, and assign identity attributes to roles(described in Identity Attributes and sections below)User Roles

Authorisation Tier 1

This component manages permissions, determining what actions each end user is authorized to perform on a specific Agent resource. It plays a critical
role in maintaining system security by ensuring that only the necessary users have limited access to specific functions, realised through an API Gateway,
more specifically , and relies on to retrieve roles of authenticated end users to enforce Spring Cloud Gateway Tier1 Authentication Provider RBAC

 to authorize or deny the access to the requested agent resource.(Role Based Access Control) policies

RBAC policies will be applied to check if the end user has the authorisation to access the requested agent resource/functionality based upon its assigned
roles.

Tier 1 Credential

The tier 1 credential consists of an OpenID Connect(OAuth 2.0) issued by the , in the form of a JWT()AccessToken Tier 1 Authentication Provider rfc7519
that contains standard extended with the following four custom claims:claims

Client Roles

The client roles is an array containing the list of roles assigned to the end user through the functionalities of the component:User & Roles

: [client-roles " "NOTARY , "ONBOARDER_M"]

this will also be included in every tier 1 access token with the claim name " " of the JWT()client-roles rfc7519

Participant ID

The participant ID is the unique and immutable ID used to identify the participant in the tier 2 IAA process. It is represented by a formatted as shown GUID
in the following example:

: participant_id "02309243-2f77-456a-a1db-d8e8bb006f74"

https://eclipse-edc.github.io/documentation/
https://eclipse-edc.github.io/documentation/for-adopters/distributions-deployment-operations/
https://eclipse-edc.github.io/documentation/for-adopters/distributions-deployment-operations/
https://www.elastic.co/docs
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html
https://min.io/docs/minio/container/operations/concepts/architecture.html
https://min.io/docs/minio/container/operations/installation.html
https://min.io/docs/minio/container/operations/installation.html
https://www.postgresql.org/docs/current/tutorial-arch.html
https://www.postgresql.org/docs/current/install-binaries.html
https://www.postgresql.org/docs/current/install-binaries.html
https://cloud.spring.io/spring-cloud-gateway/reference/html/#gateway-how-it-works
https://cloud.spring.io/spring-cloud-gateway/reference/html/#gateway-how-it-works
https://cloud.spring.io/spring-cloud-gateway/reference/html/
https://cloud.spring.io/spring-cloud-gateway/reference/html/
https://oauth.net/2/access-tokens/
https://datatracker.ietf.org/doc/html/rfc7519
https://openid.net/specs/openid-connect-core-1_0.html#Claims
https://datatracker.ietf.org/doc/html/rfc7519

this will also be included in every tier 1 access token with the claim name " " of the JWT()participant_id rfc7519

Note that the participant ID will never change in time.

Credential ID

The credential ID is the unique ID used to identify the current credential participant in the tier 2 IAA process. It is represented by the of the HASH Public
used to issue the (see) formatted as inkey Participant Credential ACV Dynamic - BP 03A - Onboard a Participant Subresource integrity W3C

as shown in the following example:Recommendation

: credential_id "sha384-Li9vy3DqF8tnTXuiaAJuML3ky+er10rcgNR/VqsVpcw+ThHmYcwiB1pbOxEbzJr7"

this will also be included in every tier 1 access token with the claim name " " of the JWT()credential_id rfc7519

Note that the credential ID will change in time: e.g. when a credential is compromised a new issuance of credentials must occur, requesting a new keypair
creation.

Identity Attributes

Participant identity attributes are used to enable the specification of access to a subset of functionalities for a participant. In the context of Tier 2
communication, the presence of Identity Attributes ensures ABAC compliance. Specifically, services provided by dataspace participants to other
participants can be protected by one or more Attributes.

A subset of those attributes can be assigned to Tier 1 roles(see Tier 1 User Roles) meaning that every end user belonging to this role owns it, and is
represented as in the following example;

: [identity_attributes " "DATA_CONSUMER , "DATA_ACCESS_LEVL1"]

this will also be included in every tier 1 access token with the claim name " " of the JWT()identity_attributes rfc7519

Tier 1 User Roles

Tier 1 roles are the core elements on which the RBAC policies are enforced and are also used by the participant governance to assign a subset of
Participant Identity Attributes(see Identity Attributes) to its end users.

Here is the updated list of Roles that are used inside Simpl-Open:

Human Readable Role Name Role Value Description Predefined Participant Type Assigned Identity Attributes Id Component

Tier 2 authorization manager T2IAA_M In the Dataspace
Governance
Authority is the one
who is in charge of
defining and
changing the
onboarding
procedure itself, like
setting up the
mandatory
documents and the
rules that will be
followed by the
onboarding process.

true Governance
Authority

IAA-ONB-FE

IAA-ONB-BE

Tier 2 authorization operator NOTARY tier 2 authorisation
operator, the one
who is in charge of
taking care of
onboarding requests
and follow their
process. It will ask
for further
documents, it will
comment on the
onboarding requests,
and reject/approve
the requests

true Governance
Authority

IAA-ONB-FE

IAA-ONB-BE

Tier 2 setup administration role ONBOARDE
R_M

tier 2 setup
administrator role,
the one who is in
charge of finalising
the tier 2 setup of an
agent installation.

true All Participant IAA-U&R-FE

IAA-U&R-BE

Tier 2 identity attributes manager IATTR_M This role is present
only in the
Dataspace
Governance
Authority and its
duties are to cover
the whole lifecycle of
Identity Attributes,

true Governance
Authority

IAA-SAP-FE

IAA-SAP-BE

https://datatracker.ietf.org/doc/html/rfc7519
https://confluence.simplprogramme.eu/display/SIMPL/ACV+Dynamic+-+BP+03A+-+Onboard+a+Participant
https://www.w3.org/TR/SRI/
https://www.w3.org/TR/SRI/
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519

from the creation
and management to
the assignment to
participants

Tier 1 user and role manager T1UAR_M Tier 1 user and roles
manager. In the
Dataspace
Governance
Authority, this role
will manage local
roles and dataspace
identity attributes
(defining them and
assigning them to
participant types +
defining their
assignability). In any
dataspace
participant, this role
will manage local
roles and identity
attributes
assignment to local
roles

true All Participant IAA-U&R-FE

IAA-U&R-BE

Applicant Representative APPLICANT end user responsible
for onboarding an
applicant dataspace
participant who
signup the public
dataspace

 to onboarding site
manage the
onboarding request.
His/Her primary
scope is to create an
onboarding request
and react on the Tier
2 authorization
operator (NOTARY)
interaction to get the
onboarding request
approved

true Governance
Authority

IAA-ONB-FE

IAA-ONB-BE

Ro-MU-CA Role defined in
XFSC Federated
Catalogue:
Catalogue
Administrator

true Governance
Authority

Ro-MU-A Role defined in
XFSC Federated
Catalogue:
Participant
Administrator

true Providers DATA_PROVIDER_PUBLISHER

APP_PROVIDER_PUBLISHER

INFRA_PROVIDER_PUBLISHER

Ro-SD-A Role defined in
XFSC Federated
Catalogue: Self-
Description
Administrator

true Governance
Authority

Ro-Pa-A Role defined in
XFSC Federated
Catalogue:
Participant User
Administrator

true Providers DATA_PROVIDER_PUBLISHER

APP_PROVIDER_PUBLISHER

INFRA_PROVIDER_PUBLISHER

Researcher RESEARCHER Researcher who is
able to access
research only
datasets

false Consumer ACCESS_LEVEL_MEDIUM

SD Publisher SD_PUBLISH
ER

Role defined for the
user who is
responsible for
creating and
publishing the self-
description on the
catalogue

true Providers DATA_PROVIDER_PUBLISHER

APP_PROVIDER_PUBLISHER

INFRA_PROVIDER_PUBLISHER

SD Consumer SD_CONSUM
ER

Tier-1 Role for
Consumer

true Consumer

Tier 2 IAA Components

Tier 2 is meant to be under the control of the Dataspace Governance Authority and is used by all participant agents to ensure secured and encrypted
communications(see and sections below), its components are both centralised (in the Authority Agent) and Encryption Guaranteed Authenticity/Integrity
decentralised (local to all agents)

Centralised

Identity Provider Federation

This component includes functionalities about identity information and Tier 2 credential creation, validation, and management.

Starting from the onboarding process, the Identity Provider will be used for:

Create the credential: when an applicant participant is onboarded by approving its onboarding request, a Tier 2 credential is created by the
identity provider. The participant installs the credential within its own agent.
Validate the credential: the identity provider verifies the received identity Tier 2 credentials.
Management: during the lifecycle of a credential, it can be either renewed or revoked by the Dataspace Governance Authority.

Security Attribute Provider Federation

To implement ABAC policies, which are used in agent-to-agent communications, a set of valid and known Identity Attributes are needed and will be
assigned to each dataspace participant by the Governance Authority.

The Security Attribute Provider component implements several functionalities:

Identity Attributes management (create, delete, and modify identity attributes)
Identity Attributes Participant assignment(both during the Onboarding and after)
Temporary attestation of the participant's identity attributes in the form of a signed ephemeral proof

Decentralised

Tier 2 Authentication Provider

This component is responsible for keeping the Tier 2 Credential received during the onboarding process and implements all Tier 2 Identification and
Authentication functionalities such as:

Keep safely store the participant agent Tier 2 Credential and its keypair
Check and Validate any Tier 2 credentials coming from other participant agents during the mTLS Authentication against the Identity Provider

.Federation
Check and Validate the ephemeral proof received from other participant agents after the successful mTLS Authentication process.
Check and Validate the Tier 1 credential forwarded by other participant agents against the ephemeral proof(that contains also the caller Tier 1

) public keyAuthentication Provider
Request ephemeral proof to the to be used in secured communications with other participant agentsSecurity Attribute Provider Federation

Authorisation Tier 2

This component is realised through an more specifically , and relies on the to API Gateway, Spring Cloud Gateway Tier 2 Authentication Provider
check Tier 2 credentials and ephemeral proof received during the mTLS Authentication process to enforce ABAC(Attribute Based Access Control)

 to authorize or deny access to the requested agent resource.policies

ABAC policies will be enforced in any agent-to-agent communication, by verifying whether the requestor's attributes are permitted to access the requested
resource, and if needed the enforcement of ABAC policies can be done also in both Tier 1 and Tier 2 credentials(to check if the identity attribute is also
present in the Tier 1 credential used by the end user of the caller participant agent)

Tier 2 Credential

The Tier 2 credential has the form of an X509 Certificate and is issued by a Certificate Authority embedded in the .Identity Provider Federation

Identity Attributes

Identity attributes are the most powerful and versatile tool at the disposal of the Dataspace Governance Authority to "design" the governance and the rules
in the interactions between Dataspace participants. Some attributes are built in SIMPL Open() and cannot be modified/removed.Predefined = true

Two important properties can be used in the definition of Identity attributes:

Assignable: if means that any governance of a Participant that receives this identity attribute can assign it to any Tier 1 roles to then give it to its end true
users

IsRight: if means that the identity attribute should be considered as a special centralised right.true

Here is the updated list of Identity Attributes that are used inside Simpl-Open:

Human Readable Attribute Name Identity Attribute Value Participant Type Description Predefined Assignable IsRight Id Component

Consumer CONSUMER Consumer Identity attribute used for
tagging an end user able
to act as a user of a data
consumer participant

true false false

1.

2.

3.

Data Provider DATA_PROVIDER Data Provider Identity attribute used to
tag the data provider

true false false

Application Provider APP_PROVIDER Application Provider Identity attribute used to
tag the application
provider

true false false

Infrastructure Provider INFRA_PROVIDER Infrastructure
Provider

Identity attribute used to
tag the infrastructure
provider

true false false

Data Provider Publisher DATA_PROVIDER_PUBLIS
HER

Data Provider Identity attribute needed
for publishing Data
Catalogue

true true true

Application Provider Publisher APP_PROVIDER_PUBLIS
HER

Application Provider Identity attribute needed
for publishing Application
Catalogue

true true true

Infrastructure Provider Publisher INFRA_PROVIDER_PUBLI
SHER

Infrastructure
Provider

Identity attribute needed
for publishing
Infrastructure

true true true

Basic Access Level ACCESS_LEVEL_BASIC Consumer Basic Access Level false true true

Medium Access Level ACCESS_LEVEL_MEDIUM Consumer Medium Access Level false true true

Full Access Level ACCESS_LEVEL_FULL Consumer Full Access Level false true true

Encryption

In mTLS (mutual Transport Layer Security) communication, ensures that the information exchanged between a client and a encryption of in-transit data
server is protected from interception or tampering. This encryption is achieved through the following process:

TLS Handshake: Both the client and server initiate a TLS handshake, during which they exchange public keys and agree on encryption
algorithms.
Mutual Authentication: Unlike regular TLS, in mTLS both the client and server authenticate each other by exchanging digital certificates,
confirming the identity of both parties.
Symmetric Encryption: After authentication, a symmetric encryption key is established and used to encrypt all subsequent data transmitted
between the client and server.

Through this process, , preventing unauthorized access or modification, while ensuring that both the client and data in transit is securely encrypted
server are trusted entities.

Guaranteed Authenticity / Integrity

Supports the measures in place to ensure end-to-end data integrity, such that Simpl-Open agents can validate the authenticity of the delivered information.

This capability is achieved by implementing mTLS communication between agents, ensuring that communication can be established only between trusted
and known participants from the Authority.
The Governance Authority during the onboarding processes creates unique Identity Credentials for each participant of the Dataspace. Then the participant
uses the credential during the mTLS communication.

Self Descriptions

The metadata will be described as self-descriptions. These are described in this section.

In the sub-section Self-Description Tooling the tools to create self-descriptions are introduced and the flow of the different steps to be considered are
visualized. The SD Schema Creator enables customized schemas for each data space. In Schema Definition Properties we enlist the proposed attributes
any SIMPL data space should utilise. The Validation of Syntax and schema can be looked up in SD Tooling Syntax Validation & Schema Validation.

The structure of Self Descriptions should be based on the . There are already GAIA-X powered data spaces providing such a SD. GAIA-X Trustframework
This way the created SD can be easily reused and be enhanced by the special requirements of each sectoral data space.

Base Entities and their relationship due to GAIA-X Trustframework

https://gaia-x.gitlab.io/policy-rules-committee/trust-framework/trust_anchors/

The description of the attributes for each Entity is described in the GX-Trustframework document and the respective chapters.

Proposed enhancements based on SIMPL requirements related to ServiceOffering from GAIA-X Trustframework

https://gaia-x.gitlab.io/policy-rules-committee/trust-framework/service_and_subclasses/

Mapping of SIMPL required attributes to SD Entities and attributes

Data Offering:

Simpl Attribute Entity Attribute Cardinality Mandatory / Recommended Data Type Constraint Comment

Unique identifier service-
offering

id 1 Mandatory xsd:string The id of the
ServiceOffering.
usually refering to a
DID. Set
automatically.

Name service-
offering

name 1 Mandatory xsd:string sh:maxLength 255 A human readable
name of the service
offering

Description service-
offering

description 1 Mandatory xsd:string sh:maxLength 1000 a short description
of the service
offering

Suggestions for enhancing the SD with Data Types and Constraints:

In order to allow ServiceProvider reusing their Self Descriptions according to GAIA-X Trustframework, we suggest mapping the attributes to
mandatory attributes defined by GAIA-X Trustframework and enhance the SD with SIMPL entities for additional mandatory attributes due to
SIMPL needs.

Location of the dataset (e.g. URL, handle) service-
offering

serviceAcce
ssPoint

1 Mandatory xsd:anyURI sh:pattern
"[(http(s)?):\/\/
(www\.)?a-zA-Z0-
9@:%._\+~#=]
{2,256}\.[a-z]
{2,6}\b([-a-zA-
Z0-9@:%_\+.~#?&
//=]*)"

a list of Service
Access Point which
can be an endpoint
as a mean to access
and interact with the
resource

Keywords service-
offering

keywords 0..16 Recommended xsd:string sh:maxLength 50 list of keywords

Language (of the metadata, like the title,
description)

service-
offering

inLanguage 1 Mandatory xsd:string sh:languageIn
("bg" "hr" "cs"
"da" "nl" "en"
"et" "fi" "fr"
"de" "el" "hu"
"ga" "it" "lv"
"lt" "mt" "pl"
"pt" "ro"
"sk" "sl" "es"
"sv")

The language of the
content or
performance or used
in an action. Please
use one of the
language codes
from the IETF BCP
47 standard. See
also availableLangua
ge.

Version xsd:string The version of the
self-description.
Technical property,
set automatically.

Creation date xsd:
dateTimeSta
mp

The first onboarding
date. Technical
property, set
automatically.

Last update date xsd:
dateTimeSta
mp

 The last update
date. Technical
property, set
automatically.

SD Schema xsd:string Reference to the
used Schema ID
(and version).
Technical property,
set automatically.

Data Provider provider-
information

providedBy 1 Mandatory xsd:string sh:maxLength 255 Reference to
Participant SD. To
be Set
automatically.

Contact point (who to contact in case of
questions/issues)

provider-
information

contact 1 Mandatory xsd:string sh:pattern "^[\w-
\.]+@([\w-]+\.)+
[\w-]{2,4}$"

email adress of the
contact point

License offering-
price

license 1..n Mandatory xsd:anyURI sh:pattern
"[(http(s)?):\/\/
(www\.)?a-zA-Z0-
9@:%._\+~#=]
{2,256}\.[a-z]
{2,6}\b([-a-zA-
Z0-9@:%_\+.~#?&
//=]*)"

sh:maxLength 255

A list of SPDX identifi
ers or URL to
document

Price Type Recommended xsd:string sh:in("free"
"commercial")

Link to price in the
future.

Price (free, under cost) offering-
price

price 1 Mandatory xsd:decimal sh:minInclusive 0

Currency Mandatory xsd:string sh:in("BGN"
"EUR" "CZK"
"DKK" "HUF"
"PLN" "RON"
"SEK")

Access policy (to define who can access the
dataset)

service-
policy

policy 0..n Recommended xsd:string sh:pattern "[:,\
{\}\[\]]|(\".*?
\")|('.*?')|[-
\w.]+"

a list of policy expr
essed using a DSL
(e.g., Rego or
ODRL) (access
control, throttling,
usage, retention, …)

Usage policy (to define how a dataset can
be used)

service-
policy

policy 0..n Recommended xsd:string sh:pattern "[:,\
{\}\[\]]|(\".*?
\")|('.*?')|[-
\w.]+"

a list of policy expr
essed using a DSL
(e.g., Rego or
ODRL) (access
control, throttling,
usage, retention, …)

Compliance: Indicates compliance with
relevant data protection regulations and
standards.

service-
policy

dataProtecti
onRegime

0..n Recommended xsd:string sh:pattern "[:,\
{\}\[\]]|(\".*?
\")|('.*?')|[-
\w.]+"

Provenance dataset-
properties

producedBy 1 Recommended xsd:anyURI sh:pattern
"[(http(s)?):\/\/

a resolvable link to
the participant self-

https://en.wikipedia.org/wiki/Service_Access_Point
https://en.wikipedia.org/wiki/Service_Access_Point
http://tools.ietf.org/html/bcp47
http://tools.ietf.org/html/bcp47
https://schema.org/availableLanguage
https://schema.org/availableLanguage
https://github.com/spdx/license-list-data/tree/master/jsonld

(www\.)?a-zA-Z0-
9@:%._\+~#=]
{2,256}\.[a-z]
{2,6}\b([-a-zA-
Z0-9@:%_\+.~#?&
//=]*)"

description legally
enabling the data
usage

Format under which the data is distributed
(e.g. csv, xml, …)

dataset-
properties

1 Mandatory xsd:string

Schema of the dataset, depends on the type
of data for JSON it would be JSON Schema
Description that states what fields the data
has and the types.

dataset-
properties

openAPI 0..n Recommended xsd:anyURI sh:pattern
"[(http(s)?):\/\/
(www\.)?a-zA-Z0-
9@:%._\+~#=]
{2,256}\.[a-z]
{2,6}\b([-a-zA-
Z0-9@:%_\+.~#?&
//=]*)"

URL of the OpenAPI
documentation

Additional Information about the dataset xsd:anyURI sh:pattern
"[(http(s)?):\/\/
(www\.)?a-zA-Z0-
9@:%._\+~#=]
{2,256}\.[a-z]
{2,6}\b([-a-zA-
Z0-9@:%_\+.~#?&
//=]*)"

Related datasets dataset-
properties

0..n Recommended xsd:string

Target users dataset-
properties

0..n Recommended xsd:string

Data Quality (to include metrics such as
completeness, accuracy, timeliness and
other)

dataset-
properties

0..n Recommended xsd:string

Encryption: Describes the encryption
algorithms and keys used to secure the data.

dataset-
properties

0..1 Recommended xsd:string

Anonymization/pseudonymization: Indicates
whether sensitive information has been
anonymized or pseudonymized to protect
privacy.

dataset-
properties

0..1 Recommended xsd:string

Contract template Name TBD termsAndCo
nditions

1..n xsd:string Name of the
template

Contract template Hash TBD termsAndCo
nditions

xsd:string hash value of the
linked document

Contract template (human-readable)
newly added

TBD termsAndCo
nditions

1..n xsd:anyURI sh:pattern
"[(http(s)?):\/\/
(www\.)?a-zA-Z0-
9@:%._\+~#=]
{2,256}\.[a-z]
{2,6}\b([-a-zA-
Z0-9@:%_\+.~#?&
//=]*)"

a resolvable link to
the Terms and
Conditions applying
to that service.

Contract template Hash Algorithm TBD termsAndCo
nditions

xsd:string Hash Algorithm that
has been used to
create the hash
value of the linked
document

SLA template Name TBD termsAndCo
nditions

1..n xsd:string Name of the
template

SLA template Hash TBD termsAndCo
nditions

xsd:string hash value of the
linked document

SLA template (human-readable) newly
added

TBD termsAndCo
nditions

1..n xsd:anyURI sh:pattern
"[(http(s)?):\/\/
(www\.)?a-zA-Z0-
9@:%._\+~#=]
{2,256}\.[a-z]
{2,6}\b([-a-zA-
Z0-9@:%_\+.~#?&
//=]*)"

a resolvable link to
the Terms and
Conditions applying
to that service.

SLA template Hash Algorithm TBD termsAndCo
nditions

xsd:string Hash Algorithm that
has been used to
create the hash
value of the linked
document

billing template Name TBD termsAndCo
nditions

1..n xsd:string Name of the
template

billing template Hash TBD termsAndCo
nditions

xsd:string hash value of the
linked document

billing template (human-readable) newly
added

TBD termsAndCo
nditions

1..n xsd:anyURI sh:pattern
"[(http(s)?):\/\/
(www\.)?a-zA-Z0-
9@:%._\+~#=]
{2,256}\.[a-z]
{2,6}\b([-a-zA-

a resolvable link to
the billing
template applying to
that service.

https://github.com/OAI/OpenAPI-Specification/blob/3.1.0/versions/3.1.0.md
https://github.com/OAI/OpenAPI-Specification/blob/3.1.0/versions/3.1.0.md

Z0-9@:%_\+.~#?&
//=]*)"

billing template Hash Algorithm TBD termsAndCo
nditions

xsd:string Hash Algorithm that
has been used to
create the hash
value of the linked
document

Infrastructure Offering:

Simpl Attribute Entity Attribute Cardinality Mandatory / Recommended Data Type Constraint Comment

Resource Type infrastructur
e-properties

1 Mandatory xsd:string sh:in("vm" "container"
"block_storage"
"object_storage"
"relational_db"
"document_db")

Region and availability zone infrastructur
e-properties

1..n Mandatory xsd:string sh:in("eu-west-1" "eu-west-2" "eu-
west-3" "eu-central-1" "eu-north-1"
"eu-south-1" "eu-south-2")

Size and capacity infrastructur
e-properties

0..1 Recommended xsd:string sh:pattern "\d+(\.\d+)?\s?
(B|KB|MB|GB|TB|PB|EB|ZB|YB)"

Operating system and image infrastructur
e-properties

0..1 Mandatory xsd:string

Network configuration infrastructur
e-properties

0..1 Recommended xsd:string

Security settings (access control,
security groups/firewalls, encryption)

infrastructur
e-properties

0..1 Mandatory xsd:string

Instance type infrastructur
e-properties

0.1 Mandatory xsd:string

Storage type infrastructur
e-properties

0.1 Mandatory xsd:string

Backup and redundancy infrastructur
e-properties

0..1 Recommended xsd:string sh:in("full-backup" "incremental-
backup" "differential-backup")

Scalability options infrastructur
e-properties

0..1 Recommended xsd:string sh:in("dynamic-scaling" "scheduled-
scaling", "sharding")

Monitoring and logging infrastructur
e-properties

0..1 Recommended xsd:string

Tags and metadata infrastructur
e-properties

keywords 0..16 Recommended xsd:string sh:maxLength 50

External Url infrastructur
e-properties

1 Mandatory xsd:string sh:maxLength 255

Deployment script ID infrastructur
e-properties

0.1 Mandatory xsd:string

termsAndCondition structure (defined by GAIA-X Trustframework)

Attribute Cardinality DataType Comment

URL 1 xsd:string a resolvable link to document

hash 1 xsd:string SHA256 of the above document

dataAccountExport structure (defined by GAIA-X Trustframework)

The purpose is to enable the participant ordering the service to assess the feasibility to export its personal and non-personal data out of the service.
This export shall cover account data e.g., account holder’s billing information, information on the PII held - but also data provided previously to the service
by the user.

Attribute Cardinality DataType Comment

requestType 1 xsd:string the mean to request data retrieval: API, email, webform,
unregisteredLetter, registeredLetter, supportCenter

accessType 1 xsd:string type of data support: digital, physical

formatType 1 xsd:string type of Media Types (formerly known as MIME types) as defined by the IANA.

Quality Rules

https://www.iana.org/assignments/media-types/media-types.xhtml

For the MVP only are supported. A Quality Score can only be calculated for recommended quality rules thus this will also not be mandatory quality rules
supported.

 enforced during the creation of a Self-Description (SD) for an offering, to ensure the data quality of the SD. A resource Mandatory quality rules are always
provider is not be able to publish an SD that is not complying with the mandatory quality rules.

Quality Rule Formalization

Quality rules are defined in the schema of the self-description (which are semantic RDF Graphs) and allow to express data types, constraints and
conditions on those RDF Graphs. Thus, we want to use (Shape Constraint Language) Constrains as the formal notation to express quality rules. SHACL

The quality rules that can be defined for an SD property can be base on the data type and/or on a SHACL constraint. Example for Constraints:

Minimum or maximum length of a string value
Value Ranges for Numbers
Non-Negative Numbers
Regular Expressions (Patterns)
List of allowed values
Constraints based on other properties

Data Model (initial)

To define the quality rules, we have three basic entities:

Quality Rule: The (mandatory) quality rule. It is uniquely defined by an id and contains a textual description of the rule in clear text;
Rule Template: The template for the formal definition of the rule. It contains besides the ID a field with SHACL template that are parameterised.
The number of parameter and their type is defined in a parameter_schema, i.e., JSON Blob with the parameter and data types;
Quality Dimension: The quality dimension used to group the quality rule for instance FAIR as example.

Each Quality Rule has exactly one Dimension and one Rule Template associated. The template_assoc also contains the concrete parameterization for the
rule template.

Score Calculation

The score is calculated by dimension.

\delta_{r,s} = \begin{cases}
 1 & \text{if the quality rule r is fulfilled for the self-description s} \\
 0 & \text{else}
\end{cases}
\newline \newline
\text{score}(s, d) = \frac{\sum_{r \ in ~R_d} \delta_{r,s} * w_r}{\sum_{r \ in ~{R}_d} w_r} * 100
\newline \newline
s \text{ is valid} \Leftrightarrow \forall d \in D: \text{score}(s, d) \geq \text{min_score}_d

https://www.w3.org/TR/shacl/

1.

The kronecker-delta is 1 if the quality rule r is fulfilled for the self-description s, else 0.

The score for a self-description s and quality dimension d is calculated by the sum over all the Quality rules r for the Dimension d (R_d) multiplied by their
weight w. This is than normalized by the sum of all weights for the dimension. Because we want to have a value between 0-100 and not between 0-1 it is
multiplied by 100.

A self-description is valid exactly if, for all quality dimension the score is greater than the specified threshold (min_score).

Calculation Process

The calculation of the score (and the validation of the rules) is done during the publication of the self-description in the query mapper. First, we get all the s
quality rules that are active from the database (with the SHACL template associated). We loop over all the rules and validate them against the self-
description . The results are added to the quality report for . After all the rules are processed, we iterate over all the quality dimensions . For each s s d
dimension the score is calculated.

Next, we check if all the mandatory rules are fulfilled and if the score for each dimension is above the threshold defined. If this is not the case, we abort the
publication and return the quality report to the provider. Else, the publication continues and the quality report is returned to the provider.

Self-Description Tooling

The self-description tooling consist of four different components that are all in their respective repositories:

SD Schema Creator: SD Schemas
This component creates the schemas that describe the form and content of the self-description. It is used by the Governance Authority to set the
standard on the Self-Description. Technically it is done by a set of configuration files in the form of YAML-Documents. Those files are verified and

https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling/sd-schemas/sd-schemas

1.

2.

3.

4.

transformed into an ontology and SHACL Constraints that are used by the other components to create the wizards. The component is written in
Python and we need to adjust at least the YAML Configuration for the POC.

SD Creation Wizard API: SD Creation Wizard API
The main API project. Transform the SHACL-shapes from the SD Schema Creator into JSON forms that are used by the frontend to allow the
provider to write new Self-Descriptions. The project is written in Java, currently we do not foresee changes needed for the POC.

SD Creation Wizard Frontend: SD Creation Wizard Frontend
Frontend with the forms for the provider to create Self-Descriptions. Written in Angular and NodeJS. The result is a SD in the form of a JSON-LD
document that can be uploaded to the catalogue.

SD Validation API: SD Validation API
Validation of the Self-Description against SHACL files. Might be used for the Quality Rule Validation. Currently outside of the POC. Written in
Java.

Flow Diagram

https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling/sd-creation-wizard-api
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling/sd-creation-wizard-frontend
https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling/sd-validation-api

1.
2.
3.
4.
5.
6.

7.

Provider User select offering and fill form;
SD Tooling FE do first syntax validation based on the schema and return feedback to user;
User clicks on Save button;
SD Tooling FE create a TTL file with the values inserted on the form;
SD Tooling FE invoke an API to transmit TTL file created;
SD Tooling BE downloads SLA Agreements PDF file from the Storage. (The file is static and pre-loaded on the storage);

7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.

SD Tooling BE calculate hash with SHA-256 algorithm;
SD Tooling BE downloads Billing Schema PDF file from the Storage. (The file is static and pre-loaded on the storage);
SD Tooling BE calculate hash with SHA-256 algorithm;
SD Tooling BE downloads Contract Template PDF file from the Storage. (The file is static and pre-loaded on the storage);
SD Tooling BE calculate hash with SHA-256 algorithm;
SD Tooling BE attach hashing of three files and algorithm inside the TTL file;
SD Tooling BE invoke an API to Validation API tool for validation of graph TTL file against the schema;
SD Tooling BE receives Validation Result;
SD Tooling BE returns Updated TLL with the new fields (hash and algorithm);
SD Tooling FE generates JSON-LD file;
User can download JSON-LD file.

SD Schema Creator

Background

Self-Description in the context of DATA/APP are documents that describe the service offering (either Data, Application, or Infrastructure). The Schema of
the Self-Description defines the format of the Self-Description, i.e. it is a description about what are the fields for the self-description, their data types and if
they are mandatory or not.

Component Self-Description Schema Creator:

The Schema-Framework is a component that is able to generate the self-description schemas from configuration files. The idea is that from a simple
configuration the schemas are generated and later used by the provider to write the self-description.

It should include validation of the schema files (syntax and semantic)

Basis of the implementation is the repository from GaiaX Context sd-schemas

Context View

The main actor on the SD Schema Creator is the Data Governance Authority. They can configure the schema by changing the yaml files that define how
the schemas for the different services should look like.

Component View

The input of the system is the SD Schema Configuration, the file uses the LinkML data model and is serialized as a YAML document. After the
configuration is changed the process is triggered that first checks the syntax and the semantic. After the validation the configuration files are transformed
into two different files that describe the semantic. One is an ontology, i.e. a formal representation of the knowledge which is used as a vocabulary for the
SD Tool. The other are constraints in the form of SHACL-Shapes that are used as a template to build the forms in the SD Tool. Both semantic files are
serialized as Turtle-files.

https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling/sd-schemas/sd-schemas/-/tree/main?ref_type=heads

Syntax Validation

For YAML files there exist currently no standard for schema validation. To this end, we transform the SD Schema Description into a JSON Serialisation
and use a JSON-Schema Description for the syntax validation. This JSON-Schema is written by the Data Governance Authority.

Semantic Validation

The Semantic Validation uses a python script which reads some configuration and guideline (for instance which fields are mandatory in the schema).

Runtime View

For the POC the System is simply deployed as a git-lab repository. A git-lab CI Pipeline starts if the configuration is changed by the data governance
authority and generates the new files. If the Data Provider start the SD Tool, the SD-Tool pulls from the repository the current SHACL Contraints and
Ontology.

SD Tooling Syntax Validation & Schema Validation

Vocabulary, Schema and Self-Descriptions

The vocabulary is a formal description of an ontology, representing knowledge and relationships between the terminologies, containing inference and
integrity rules for reasoning.

A schema is describing a data object with constraints on the content, structure and meaning of a graph. These conditions may constrain the number of
values that a property may have, the type of values, numeric ranges, string matching patterns or logical combinations of constraints.

The Self-Description is an instance of a schema object, meaning that values are assigned to the properties.

Syntax Validation

Syntax Validation during the process of creating the SD comprises the following:

Formatting: Check if the file is malformed (e.g. missing brackets etc.);
Data Types: Check for the correctly applied values according to data types. Allowed data Types according to .dataTypeAbbreviation.yaml

The syntax validation for data types in the SD Frontend is based in the schema definition, which is the single point of truth.

The Syntax validation on the provider node is based on the schemas that are imposed by Simpl and are intended to guide the user to provide an error free
Self-Description.

The Syntax validation on the Governance Authority Node ensures that only valid Self-Descriptions will be published to the catalogue.

Allowed Data Types

xsd:string: 'http://www.w3.org/2001/XMLSchema#string'
xsd:boolean: 'http://www.w3.org/2001/XMLSchema#boolean'
xsd:decimal: 'http://www.w3.org/2001/XMLSchema#decimal'
xsd:float: 'http://www.w3.org/2001/XMLSchema#float'
xsd:double: 'http://www.w3.org/2001/XMLSchema#double'
xsd:duration: 'http://www.w3.org/2001/XMLSchema#duration'
xsd:dateTime: 'http://www.w3.org/2001/XMLSchema#dateTime'
xsd:time: 'http://www.w3.org/2001/XMLSchema#time'
xsd:date: 'http://www.w3.org/2001/XMLSchema#date'

https://gitlab.eclipse.org/eclipse/xfsc/self-description-tooling/sd-schemas/sd-schemas/-/blob/main/single-point-of-truth/yaml/validation/trusted-cloud/dataTypeAbbreviation.yaml?ref_type=heads

1.
2.
3.
4.
5.

xsd:gYearMonth: 'http://www.w3.org/2001/XMLSchema#gYearMonth'
xsd:Day: 'http://www.w3.org/2001/XMLSchema#Day'
xsd:hexBinary: 'http://www.w3.org/2001/XMLSchema#hexBinary'
xsd:base64Binary: 'http://www.w3.org/2001/XMLSchema#base64Binary'
xsd:anyURI: 'http://www.w3.org/2001/XMLSchema#anyURI'
xsd:QName: 'http://www.w3.org/2001/XMLSchema#QName'
xsd:NOTATION: 'http://www.w3.org/2001/XMLSchema#NOTATION'
xsd:dateTimeStamp: 'http://www.w3.org/2001/XMLSchema#dateTimeStamp'
xsd:enum: 'http://www.w3.org/2001/XMLSchema#enum'
xsd:integer: 'http://www.w3.org/2001/XMLSchema#integer'
xsd:address: 'http://www.w3.org/2001/XMLSchema#address'
xsd:nonNegativeNumber: 'http://www.w3.org/2001/XMLSchema#nonNegativeNumber'
did:example: 'https://www.w3.org/TR/did-core/#example'
dct:location: 'http://dublincore.org/usage/terms/history/#Location-001'
trusted-cloud:meaningfulString: 'class-placeholder-from-dataTypeAbbreviation.yaml'

Semantic Validation

Semantic Validation during the process of creating the SD comprises:

the verification of property patterns;
data ranges;
other constraints;
the cardinality of the properties;
the ontology/vocabulary compliance.

Examples:

ValueRanges;
Length;
Pattern;
Value Comparison;
Memberships;
Logical.

Constraints can be defined according to Shapes Constraint Language

Policies

For our context we want to define both access and usage policies for resources (Data, Application or Infrastructure)

We follow the definition of the Data Space Support Center:

Access Rules/Policy: define whether access to a resource is allowed or not.
Usage Rules/Policy: define how a resource might or may not be used.

Access control policies control the authorisation to access specific data while the data rights owner retains direct control over the data. Usage policies,
including consent, regulate the permissible actions and behaviours related to the utilisation of the accessed data, which means keeping control of data
even after the items have left the trust boundaries of the data owner.

https://dssc.eu/space/BVE/357075567/Access+%26+Usage+Policies+Enforcement#Data-Space-Registry

Following this definition the access policies are checked before the provider gives (at least partial) control over to the consumer. The usage policies
describe the behavior after the consumer has access to the resource (Data, Application or Infrastructure).

Policy Language

We need a formal and machine-readable way to express and enforce the policies. We want to use Open Digital Rights Language (ODRL) to write both
access and usage policies. https://www.w3.org/TR/odrl-model/

The key components of ODRL are:

Here are the key components of an ODRL usage policy:

Asset: The digital content or service to which the policy applies;
Permissions: Actions that are allowed with respect to the asset (e.g., read, download);
Prohibitions: Actions that are explicitly forbidden;
Constraints: Conditions or limitations that must be met for the permissions to apply (e.g., time restrictions);
Duties: Obligations that must be fulfilled by the user in order to exercise a permission (e.g., attribution, payment).

Different ways exist to serialize ODRL expressions we want to use JSON-LD for this part:

{
 "@context": "http://www.w3.org/ns/odrl.jsonld",
 "@type": "Policy",
 "uid": "http://example.com/policy/123",
 "profile": "http://www.w3.org/ns/odrl/2/odrl.jsonld",

https://www.w3.org/TR/shacl/#property-shapes
https://dssc.eu/space/BVE/357075567/Access+%26+Usage+Policies+Enforcement#Data-Space-Registry
https://www.w3.org/TR/odrl-model/

 "permission": [
 {
 "target": "http://example.com/asset/image123",
 "action": "http://www.w3.org/ns/odrl/2/distribute",
 "constraint": [
 {
 "leftOperand": "http://www.w3.org/ns/odrl/2/purpose",
 "operator": "http://www.w3.org/ns/odrl/2/eq",
 "rightOperand": "http://www.example.com/vocab#nonCommercial"
 },
 {
 "leftOperand": "http://www.w3.org/ns/odrl/2/payAmount",
 "operator": "http://www.w3.org/ns/odrl/2/eq",
 "rightOperand": "0"
 }
],
 "duty": [
 {
 "action": "http://www.w3.org/ns/odrl/2/attribution"
 }
]
 }
],
 "prohibition": [
 {
 "target": "http://example.com/asset/image123",
 "action": "http://www.w3.org/ns/odrl/2/modify"
 }
]
}

Access Policy

Here is an example for an access policy for a dataset provided by a data provider. The policy will specify who can access the data, under what conditions,
and for how long.

Scenario:

The dataset contains research data that can be accessed by different roles:
Researchers: Full access to the data for analysis;
Students: Limited access to anonymized data for study purposes;
External partners: Access to aggregated data for collaboration purposes.

The access is granted for a specific period;
The access is granted only for the geographic location of the EU.

We use different datasets for the full data, anonymized data and aggregated data.

{
 "@context": "http://www.w3.org/ns/odrl.jsonld",
 "@type": "Policy",
 "uid": "http://example.com/policy/123",
 "profile": "http://www.w3.org/ns/odrl/2/odrl.jsonld",
 "target": "http://example.com/dataset/research123",
 "assigner": {
 "uid": "http://example.com/provider/dataProvider001",
 "role": "http://www.w3.org/ns/odrl/2/assigner"
 },
 "permission": [
 {
 "assignee": {
 "uid": "SECURITY_ATTRIBUTE",
 "role": "http://www.w3.org/ns/odrl/2/assignee"
 },
 "action": [
 { "name": "http://www.w3.org/ns/odrl/2/read" }
],
 "target": "http://example.com/dataset/research123/aggregated",
 "constraint": [
 {
 "leftOperand": "http://www.w3.org/ns/odrl/2/dateTime",
 "operator": "http://www.w3.org/ns/odrl/2/leq",

1.

a.

b.

 "rightOperand": "2024-12-31T23:59:59"
 },
 {
 "leftOperand": "http://www.w3.org/ns/odrl/2/dateTime",
 "operator": "http://www.w3.org/ns/odrl/2/geq",
 "rightOperand": "2024-01-01T00:00:00"
 },
 {
 "leftOperand": "http://www.w3.org/ns/odrl/2/spatial",
 "operator": "http://www.w3.org/ns/odrl/2/eq",
 "rightOperand": "http://www.geonames.org/external-partner-location"
 }
]
 }
]
}

Minimal Access Policy

For the MVP we plan to support access policies with limited expressive power. It is possible to define two different actions

http://www.w3.org/ns/odrl/2/read: the attribute holder is able to search for the dataset/application/infrastructure;
http://www.w3.org/ns/odrl/2/use: The attribute holder can consume the dataset/application/infrastructure.

while implies .use read

For constraints we plan to support date time constraints that allow to specify when the policy should be valid.

{RESSOURCE_URI}, {POLICY_URI}, {PROVIDER_URI} are later automatically replaced with the correct URI. {SECURITY_ATTRIBUTE_URI} need to be
specified but we provide a documentation with the available URI, as well as the action (read for searching and use for consumption, which implies read)

{
 "@context": "http://www.w3.org/ns/odrl.jsonld",
 "@type": "Policy",
 "uid": "{POLICY_URI}",
 "profile": "http://www.w3.org/ns/odrl/2/odrl.jsonld",
 "target": "{RESSOURCE_URI}",
 "assigner": {
 "uid": "{PROVIDER_URI}",
 "role": "http://www.w3.org/ns/odrl/2/assigner"
 },
 "permission": [
 {
 "assignee": {
 "uid": "{SECURITY_ATTRIBUTE_URI}",
 "role": "http://www.w3.org/ns/odrl/2/assignee"
 },
 "action": [
 { "name": "http://www.w3.org/ns/odrl/2/{read/use}" }
],
 "target": "{RESSOURCE_URI}",
 "constraint": [
 {
 "leftOperand": "http://www.w3.org/ns/odrl/2/dateTime",
 "operator": "http://www.w3.org/ns/odrl/2/leq",
 "rightOperand": "2024-12-31T23:59:59"
 },
 {
 "leftOperand": "http://www.w3.org/ns/odrl/2/dateTime",
 "operator": "http://www.w3.org/ns/odrl/2/geq",
 "rightOperand": "2024-01-01T00:00:00"
 }
]
 }
]
}

API to get all available attributes with description about the semantic. When will this be available and can we get static list so we can start
developing.

Prioritizes before the MTLS;

http://www.w3.org/ns/odrl/2/
http://www.w3.org/ns/odrl/2/

1.

b.
c.

2.
a.
b.

3.

a.
b.

4.
a.
b.

Availability not clear;
Provide a static list.

API to get the attributes of the searching consumer. For the use of filtering the results of the catalogue search:
over the public key;
from the JWT, attributes are in the payload.

How to get Provider ID? While you use self-description? Can we somehow get the ID of the provider from an API to add this information to the
Self-description:

unique id of the agent is the public key, from the vault (HashiCorp/OCM) or the public endpoint;
self-description in long run of the participants.

Map Policy to ABAC (who is doing it?):
ABAC only for first layer;
Second Layer with policy evaluation in EDC.

Usage Policy

The IDS Usage Control Language is based on ODRL: https://international-data-spaces-association.github.io/DataspaceConnector/Documentation/v5
/UsageControl

The Usage Policy is part of the usage contract, as well es the Self-Description. It contains permissions, prohibitions and obligations.

Usage Policy Examples:

Allow the Usage of the Data

{
 "@context": "http://www.w3.org/ns/odrl.jsonld",
 "@type": "Policy",
 "uid": "http://example.com/policy/usage/UsagePolicy001",
 "profile": "http://www.w3.org/ns/odrl/2/odrl.jsonld",
 "target": "http://example.com/dataset/TestData001",
 "action": "http://www.w3.org/ns/odrl/2/use",
 "assigner": {
 "uid": "http://example.com/provider/dataProvider001",
 "role": "http://www.w3.org/ns/odrl/2/assigner"
 },
 "permission": [
 {
 "assignee": {
 "uid": "http://example.com/roles/dataConsumer001",
 "role": "http://www.w3.org/ns/odrl/2/assignee"
 }

https://international-data-spaces-association.github.io/DataspaceConnector/Documentation/v5/UsageControl
https://international-data-spaces-association.github.io/DataspaceConnector/Documentation/v5/UsageControl

 }
]
}

Use Data and Delete it After

{
 "@context": "http://www.w3.org/ns/odrl.jsonld",
 "@type": "Policy",
 "uid": "http://example.com/policy/usage/UsagePolicy001",
 "profile": "http://www.w3.org/ns/odrl/2/odrl.jsonld",
 "target": "http://example.com/dataset/TestData001",
 "action": "http://www.w3.org/ns/odrl/2/use",
 "assigner": {
 "uid": "http://example.com/provider/dataProvider001",
 "role": "http://www.w3.org/ns/odrl/2/assigner"
 },
 "permission": [
 {
 "assignee": {
 "uid": "http://example.com/roles/consumer001",
 "role": "http://www.w3.org/ns/odrl/2/assignee"
 }
 }
],
"constraint": [
 {
 "leftOperand": "http://www.w3.org/ns/odrl/2/deletion",
 "operator": "http://www.w3.org/ns/odrl/2/eq",
 "rightOperand": "after_use"
 }
]
}

Restricted Number of Usages

{
 "@context": "http://www.w3.org/ns/odrl.jsonld",
 "@type": "Policy",
 "uid": "http://example.com/policy/usage/UsagePolicy001",
 "profile": "http://www.w3.org/ns/odrl/2/odrl.jsonld",
 "target": "http://example.com/dataset/TestData001",
 "action": "http://www.w3.org/ns/odrl/2/use",
 "assigner": {
 "uid": "http://example.com/provider/dataProvider001",
 "role": "http://www.w3.org/ns/odrl/2/assigner"
 },
 "permission": [
 {
 "assignee": {
 "uid": "http://example.com/roles/consumer001",
 "role": "http://www.w3.org/ns/odrl/2/assignee"
 }
 }
],
"constraint": [
 {
 "leftOperand": "http://www.w3.org/ns/odrl/2/count",
 "operator": "http://www.w3.org/ns/odrl/2/lteq",
 "rightOperand": "10"
 }
]
 }

Duration-restricted Data Usage

1.
2.
3.
4.

{
 "@context": "http://www.w3.org/ns/odrl.jsonld",
 "@type": "Policy",
 "uid": "http://example.com/policy/usage/UsagePolicy001",
 "profile": "http://www.w3.org/ns/odrl/2/odrl.jsonld",
 "target": "http://example.com/dataset/TestData001",
 "action": "http://www.w3.org/ns/odrl/2/use",
 "assigner": {
 "uid": "http://example.com/provider/dataProvider001",
 "role": "http://www.w3.org/ns/odrl/2/assigner"
 },
 "permission": [
 {
 "assignee": {
 "uid": "http://example.com/roles/consumer001",
 "role": "http://www.w3.org/ns/odrl/2/assignee"
 }
 }
],
"constraint": [
 {
 "leftOperand": "http://www.w3.org/ns/odrl/2/dateTime",
 "operator": "http://www.w3.org/ns/odrl/2/leq",
 "rightOperand": "2024-12-31T23:59:59"
 },
 {
 "leftOperand": "http://www.w3.org/ns/odrl/2/dateTime",
 "operator": "http://www.w3.org/ns/odrl/2/geq",
 "rightOperand": "2024-01-01T00:00:00"
 }
]
}

Extended Scenario

Another example for an extended usage policy for a dataset provided by a data provider. The policy will specify how a resource can be used once access
has been granted.

A dataset contains sensitive health research data. The data provider wants to ensure that this data is used responsibly and in compliance with specific
guidelines. The usage policy specifies the following:

The data can only be used for academic research purposes;
The data cannot be shared with third parties;
The data must be deleted after the research project is completed;
The data usage is monitored, and any breach of the policy will result in revocation of access.

{
 "@context": "http://www.w3.org/ns/odrl.jsonld",
 "@type": "Policy",
 "uid": "http://example.com/policy/usage/001",
 "profile": "http://www.w3.org/ns/odrl/2/odrl.jsonld",
 "target": "http://example.com/dataset/health_research123",
 "assigner": {
 "uid": "http://example.com/provider/dataProvider001",
 "role": "http://www.w3.org/ns/odrl/2/assigner"
 },
 "permission": [
 {
 "assignee": {
 "uid": "http://example.com/roles/researcher",
 "role": "http://www.w3.org/ns/odrl/2/assignee"
 },
 "action": [
 { "name": "http://www.w3.org/ns/odrl/2/use" }
],
 "constraint": [
 {
 "leftOperand": "http://www.w3.org/ns/odrl/2/purpose",
 "operator": "http://www.w3.org/ns/odrl/2/eq",
 "rightOperand": "http://example.com/purpose/academic_research"
 },

 {
 "leftOperand": "http://www.w3.org/ns/odrl/2/deletion",
 "operator": "http://www.w3.org/ns/odrl/2/eq",
 "rightOperand": "after_use"
 }
]
 }
]
}

Policy Enforcement

This section present draft content for a capability falling behind the scope of the MVP (December 2024) and will be completed at a later time.

Federated Catalogue

SIMPL is using the as Catalogue for Data, Apps and Infrastructure (see). XFSC Federated Catalogue architecture document of XFSC Federated Catalogue

https://gitlab.eclipse.org/eclipse/xfsc/cat
https://gaia-x.gitlab.io/data-infrastructure-federation-services/cat/architecture-document/architecture/catalogue-architecture.html

The Federated Catalogue is not a monolithic application. It consists of multiple components, to reuse existing technology and to allow scaling. Those
components can be deployed individually (see section Deployment View).

Figure 1. Components of the Catalogue

The components are

Name Responsibility

Catalogue Main component, implementing the core catalogue functionality.

Authenticati
on

External component implementing the authentication flow and user management.

Graph-DB Graph database, holding all claims contained in active Self-Descriptions. The Graph database is responsible for executing semantic
search queries.

File Store The File store is a blob storage. It holds the Self-Description files and the files for the Schemas. This includes historical versions of the
Self-Descriptions and Schemas.

Metadata
Store

Store for metadata on the Self-Descriptions, and Schemas stored in the File Store.

The architecture of the core component is described in the next sections.

Authentication

The authentication component is responsible for authenticating users. This is not a central component of the catalogue, as it will be implemented by Lot 1
"Authentication & Authorization" of the GXFS-DE project. For the catalogue implementation, a mock integration is shown, using common, off the shelf
software that implements the OpenID Connect standard .[]14

The responsibilities of the authentication components are:

https://gaia-x.gitlab.io/data-infrastructure-federation-services/cat/architecture-document/architecture/catalogue-architecture.html#_footnotedef_14

1.

2.

Storage of Users;
Storage of user roles for a Participant.

A user belongs to only one Participant, on whose behalf he or she acts (see specification section 2.4 for more details).

For the implementation, Keycloak will be used. It is widely used and also part of the implementation of other lots. Therefore, this integration of different lots
is simplified. The user will get a JSON Web Token (JWT) with user claims and authorities, which is used to authenticate requests to the catalogue []15

REST API.

An alternative implementation would be Lissi . It is not further considered, as it is not as mature as Keycloak.[]16

Graph database

The graph database holds the claims of verified, active Self-Descriptions. Claims of Self-Descriptions that fail the verification are not added to the graph
database. Claims of Deprecated, Expired or Revoked Self-Descriptions will be deleted from the Graph database.

The Graph Database can be considered as a kind of search index. The single source of truth are the active Self-Descriptions, stored in the File Store. This
means at any point in time the Graph database can be rebuilt from scratch by reimporting the claims of the Self-Descriptions. This allows the following:

Backup: An explicit backup of the Graph database is not needed. Backing up the Self-Description files (located in the File Storage) and the
metadata (located in the Metadata Store) is sufficient to allow the rebuild of the Graph Database;
Scalability: Querying the Graph database might be the most critical part regarding performance. Therefore, the Graph Database can be
replicated in the future by multiple, independent instances. Since there are no strict consistency requirements, changes in the Graph can be
applied independently. In the control flow, all write operations on Self-Descriptions pass the Metadata Store. Therefore, the consistency can be
enforced by that database.

Generically returning the Self-Description files containing claims that influence query response is not possible. To get the relevant Self-Description files, the
query to the Graph Database can be formulated to return the Gaia-X entity that is the of a Verifiable Credential. Then this can be used as credentialSubject
a filter for the Self-Description endpoint, to download the Self-Description file.

Neo4j is used as implementation of the Graph database.

Limitation: queries to non-Enterprise Neo4j Graph database return empty record when no results found, rather than empty list.

When there is no data in the Graph database, i.e., no claims extracted from Self-Description, there is still a configuration node for the neosemantics
module , which enables Neo4j to support the RDF data model, which is required here. openCypher queries over all nodes without a WHERE []17

clause or without specifying relationships always return this node, unless regular users are revoked access from the configuration node as follows:

DENY MATCH {*} ON GRAPH neo4j NODES _GraphConfig TO PUBLIC

However this revoke operation is only supported in Neo4j enterprise. We chose not to implement a workaround that involves query rewriting, as []18
this may have harmful side effects.

File Store

The File Store is responsible to persist all file-based content submitted to the catalogue. These are Self-Descriptions and Schemas.

For the sake of simplicity, a folder in the file system is used as file store. For future scalability the file store can be simply realized using an Object Storage
or Database.

Metadata Store

In the Metadata Store persists the metadata for the elements (Self-Descriptions, Schemas and Trust Anchors). It allows to efficiently identify the relevant
files in the file storage, to process the incoming requests.

It is realized as relational database (e.g., PostgreSQL or MariaDB). Since all write requests are handled by the database, the transactional functionality
guarantees the consistency of the data.

Todo: include the sections in our Wiki

Federated Catalogue - Verification of self-description [WiP]
Architecture Decisions

Contract

The state machine for a Contract Negotiation is visualised in the figure below:

https://gaia-x.gitlab.io/data-infrastructure-federation-services/cat/architecture-document/architecture/catalogue-architecture.html#_footnotedef_15
https://gaia-x.gitlab.io/data-infrastructure-federation-services/cat/architecture-document/architecture/catalogue-architecture.html#_footnotedef_16
https://gaia-x.gitlab.io/data-infrastructure-federation-services/cat/architecture-document/architecture/catalogue-architecture.html#_footnotedef_17
https://gaia-x.gitlab.io/data-infrastructure-federation-services/cat/architecture-document/architecture/catalogue-architecture.html#_footnotedef_18
https://confluence.simplprogramme.eu/pages/viewpage.action?pageId=18547488
https://confluence.simplprogramme.eu/display/SIMPL/Architecture+Decisions

Transitions marked with C indicate a message sent by the Consumer, transitions marked with P indicate a Provider message. Terminal states are final; the
state machine may not transition to another state. A new CN may be initiated if, for instance, the CN entered the TERMINATED state due to a network
issue. The associated message types to switch into the mentioned states are denoted in the bottom part of each status box. For further information refer to
the specification section .contract negotiation protocol

After successful contract negotiation the Transfer Process can be invoked via the data plane. The state machine for the transfer process is shown in the
diagram below:

https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/terminology#consumer
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/terminology#provider
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/contract-negotiation/contract.negotiation.protocol

1.
2.
3.

1.
2.
3.

Any implementation of Eclipse Dataspace Protocol must implement the state machines shown above where respective contract messages respectively
Transfer messages induces switching of states.

In EDC connector the IDS dataspace protocol is implemented. Via State Transition Functions any specific actions can be triggered like invoking consent or
contract managers. This is described in . Contract Negotiation Architecture

Steps to be done for Contract Negotiations:

Pre-requisites a provider has to do to publish a service offer at a connector (using a provider connector):

Create an Asset on provider side;
Create a Policy on provider side;
Create a Contract definition on provider side.

Steps to be done on consumer side to request a service offer from a connector (using a consumer connector):

How to fetch catalogue on consumer side;
Negotiate a contract on consumer side;
Getting the contract agreement id.

These steps are described in . Transfer-01-negotation

After successful negotiation process the transfer process can be started.

Infrastructure Provisioning

In the first step, the Infrastructure Provider (or APP/Data Providers, upon their need) can use the Deployment Script Management to add their deployment
scripts.
These scripts are Crossplane configuration files, that at the time of execution, will:

A) Provision the infrastructure resources (VM, Container or Storage);
B) Deploy Applications over the infrastructure resources (if needed);
C) Load data sets or images on the infrastructure resource (if needed).

After adding the deployment script (via the available UI or the API), the DeploymentScriptID, which is a unique ID for that deployment script will be
returned.

https://github.com/eclipse-edc/Connector/blob/main/docs/developer/ids-dataspace-protocol/contract-negotiation-architecture.md
https://github.com/eclipse-edc/Samples/tree/main/transfer/transfer-01-negotiation

In the second step, at the time of creating infrastructure offerings (or bundles of app/data + infrastructure, as it would be required for use cases explained
in BP 09A and BP 09B), the DeploymentScriptID is being added to the Self-Description.

In the third step, when the offer has been selected and successfully contracted, the Infrastructure Provisioner API (the same API that handles the addition
/removal and modifications of the Deployment Scripts in step 1) is being called, and the DeploymentScriptID will be passed to that API for execution.

Therefore, that DeploymentScriptID is being validated, and if the validation is successful, will be executed. The infrastructure Provisioner Module will (as
explained above):

A) Provision the infrastructure resources (VM, Container or Storage).;
B) Deploy Applications over the infrastructure resources (if needed);
C) Load data sets or images on the infrastructure resource (if needed).

And will share back the access data with the consumer.

The communication between the triggering module and the infrastructure provisioner is done via a message broker, to keep the process asynchronous.

Data Sharing

The data sharing between two participant agents is done via two connectors based on Eclipse Dataspace Protocol relying on the IDSA Dataspace Protocol)
. Dataspace protocol is divided into two parts: First Contract Negotiation has to be invoked and after successful negotiation the Transfer process can be
invoked. Contract Negotiation is done via for the data exchange service based on the trust protocol defined by Gaia-x. contract negotiation protocol

The proposed data transaction model scope is compliant to the EDC Dataspace Protocol.

The Information model of the dataspace model is described . here

https://projects.eclipse.org/proposals/eclipse-dataspace-protocol
https://github.com/International-Data-Spaces-Association/ids-specification
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/contract-negotiation/contract.negotiation.protocol
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/model

The figure sketches two implementations of a participant agent:

A is a that makes a available to other offering Data services and assets published Catalog Service Participant Agent DCAT Catalog Participants
by providers.
A is a (consumer) that performs and operations with another aka Connector Participant Agent Contract Negotiation Transfer Process Connector
participant agent of a Provider. An outcome of a may be the production of an , which is an defin Contract Negotiation Agreement ODRL Agreement
ing the agreed to for a . Usage Policy Dataset

For further information refer to the specification section model.

 has implemented the above-mentioned dataspace protocol as well as the depicted and planes and an additional EDC connector data control Management
. This management API is described in detail .API here

The Transfer process is described in and is implemented providing special extension to back-end systems. Transfer Process Architecture

In the context of the MVP, data orchestration refers to the data plane component responsible for the actual data transfer that takes place after a contract is
established between the parties through the connector's control plane. This orchestration of data flow is a crucial step, as it translates contractual
agreements into real actions for exchanging data between a source and a destination.

For the MVP release, this component will be implemented as an extension of the EDC connector, it has been depicted as an external entity in various
diagrams and system architectures. This approach underscores the goal of creating an external and independent solution that is agnostic of the specific

https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/terminology#catalog-service
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/terminology#participant-agent
https://www.w3.org/TR/vocab-dcat-3/#Class:Catalog
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/terminology#participant
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/terminology#connector--data-service-
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/terminology#participant-agent
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/terminology#contract-negotiation
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/terminology#transfer-process
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/terminology#connector--data-service-
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/terminology#contract-negotiation
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/terminology#agreement
https://www.w3.org/TR/odrl-model/#policy-agreement
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/terminology#policy
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/terminology#dataset
https://docs.internationaldataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/model
https://eclipse-edc.github.io/docs/#/submodule/Connector/
https://app.swaggerhub.com/apis/eclipse-edc-bot/public-api/0.7.0
https://app.swaggerhub.com/apis/eclipse-edc-bot/control-api/0.7.0
https://app.swaggerhub.com/apis/eclipse-edc-bot/management-api/0.7.0
https://app.swaggerhub.com/apis/eclipse-edc-bot/management-api/0.7.0
https://github.com/eclipse-tractusx/tractusx-edc/blob/main/docs/usage/management-api-walkthrough/README.md
https://github.com/eclipse-edc/Connector/blob/main/docs/developer/ids-dataspace-protocol/transfer-process-architecture.md

1.
2.

connector used. Such independence is achievable as long as the connector supports the IDSA Dataspace Protocol, which is a key requirement to ensure
interoperability within distributed ecosystems like sovereign data spaces or shared data infrastructures.

The primary role of this orchestrator is to serve as a bridge between the actual data source, located outside of the Simpl system, and the designated
destination where the data is intended to flow. It ensures seamless connectivity between these two points, handling the complexities of transferring data acr
oss systems that may differ in protocols and technology. Additionally, the orchestrator is designed as a specific component tailored to each type of data
source. This specialization allows to externalize the technical management of heterogeneous data sources that will be handled in the Simpl scenario,
reducing complexity and promoting flexibility in the integration of various data ecosystems.

Steps to be done for transfer process:

Either pull or push pattern can be used for transfer process:

Consumer pull
Provider push

Description according to SAMPLES from EDC: https://github.com/eclipse-edc/Samples/tree/main/transfer

Consumer pull

Following diagram presents the state machine for this case:

https://github.com/eclipse-edc/Samples/tree/main/transfer
https://eclipse-edc.github.io/docs/#/submodule/Connector/docs/developer/transfer-process?id=consumer-pull

Following diagram presents the sequence diagram for this case:

1.
2.
3.
4.

5.
6.

Provider and consumer agree to a contract (not displayed in the diagram);
Consumer initiates the transfer process by sending a with destination type DataRequest HttpProxy;
Provider Data Plane Selector is queried to find a suitable instance;
Provider Control Plane build a which type , whose: DataAddress EDR

endpoint corresponds to the public API of the selected Data Plane;
auth key is Authorisation;
auth code is a signed token generated by the Control Plane with claims;
dad containing the encrypted of the actual data source (provider ecosystem); DataAddress
cid claim containing the contract id.

This is sent to the consumer Control Plane through DSP protocol; DataAddress
Consumer Control Plane converts the into a object and dispatch it through the DataAddress EndpointDataReference EndpointDataRefer
enceReceiverRegistry.

Once this process is completed, the consumer backend applications can use the received in order to query data from the EndpointDataReference
provider Data Plane, by simply providing the provided token in the request header.

NOTE: For a Data Plane instance to be eligible for the Consumer Pull transfer, it must:

contains in the HttpProxy allowedDestTypes;
contain a which key , which contains the actual URL of the Data Plane public API. property publicApiUrl

Provider push

Following diagram presents the state machine for this case:

https://eclipse-edc.github.io/docs/#/submodule/Connector/docs/developer/transfer-process?id=provider-push

Following diagram presents the sequence diagram for this case:

1.
2.
3.

4.
5.
6.
7.
8.
9.

10.
11.

Provider and consumer agree to a contract (not displayed in the diagram);
Consumer initiates the transfer process, i.e. sends with any destination type other than DataRequest HttpProxy;
Provider Control Plane retrieves the of the actual data source and creates a based on the received DataAddress DataFlowRequest DataRequ

and this data address;est
Provider Control Plane asks the selector which Data Plane instance can be used for this data transfer;
Selector returns an eligible Data Plane instance (if any);
Provider Control Plane sends the to the selected Data Plane instance through its control API (see); DataFlowRequest DataPlaneControlApi
Provider Data Plane validates the incoming request;
If request is valid, Provider Data Plane returns acknowledgement;
DataPlaneManager of the Provider Data Plane processes the request: it creates a / pair based on the source DataSource DataSink
/destination data addresses;
Provider Data Plane fetches data from the actual data source (see); DataSource
Provider Data Plane pushes data to the consumer services (see). DataSink

Data Visualisation

For visualisation the component is chosen. Apache Superset Superset is a modern . It integrates well with a data exploration and data visualization platform
and it is open source under the . It comes out of the box with features to create a or how tovariety of data sources, Apache License dashboard explore data

. It also provides . A REST API for user & role management can be enabled and even permissions can be customised. Security Configurations Superset's
specification andpublic REST API follows the OpenAPI is documented . here

The community also provides for multi platforms and even prebuild docker builds from a . automatic builds Superset Docker Hub repository

Logging, Monitoring & Reporting

Types of logs - Reference model

The following table identifies the different types of logs that can be generated by an IT system together with their definition/description:

Grouping Type of logs Description

Business
logs

Business logs Record significant events or actions (related to steps within a business process or other functional use cases) that
occur within a system, typically used for security, audit, and troubleshooting purposes.

Technical
logs

Application
logs

Record events and activities generated by an application during its runtime, typically used for troubleshooting,
monitoring performance, and auditing activities within the application.

Database logs Record events and activities generated by a database (queries, transactions, schema changes), typically used for
troubleshooting, ensuring data integrity and auditing access.

System logs Record events and activities generated by the operating system (OS) and system-level processes. These logs provide
valuable information for monitoring system health, diagnosing issues, and ensuring security. System logs can include:
low-level system events (kernel event, hardware error), system-level events (service startups/shutdowns/failure),
authentication and authorisation events (login attempts, privilege escalation).

Network logs Record events and activities related to network traffic, devices, and communications within a network. These logs are
essential for monitoring network health, diagnosing issues, and ensuring security. Network logs can include: firewall
logs (allowed/denied connections, intrusion detection alerts, security policy violations), router and switch logs (device

https://superset.apache.org/
https://superset.apache.org/docs/intro
https://apache.org/licenses/LICENSE-2.0
https://superset.apache.org/docs/using-superset/creating-your-first-dashboard
https://superset.apache.org/docs/using-superset/exploring-data
https://superset.apache.org/docs/security/
https://swagger.io/specification/
https://superset.apache.org/docs/api
https://superset.apache.org/docs/installation/docker-builds
https://hub.docker.com/r/apache/superset

1.
a.
b.

2.
a.
b.
c.
d.

1.
2.

a.
b.
c.
d.

startups, interface status changes, routing protocol updates), DNS logs (queries/responses, cache activity, DNS server
configuration changes and errors), proxy logs (user access, URL requests, content filtering, bandwidth usage) and
network traffic logs (packet-level data, including source and destination IP addresses, port numbers, protocols, packet
payloads).

Security logs Security logs are not a distinct type of log, they are a subset of all the other logs listed above, which allow to detect and
respond to security incidents effectively.
Ex: Intrusion detection alerts, anti-virus scans. security policy violations,

Infrastruct
ure metrics

Infrastructure
metrics

A metric is a piece of data that has a name, optional labels, and a value. It is not a log per-se, as they need to be
retrieved by periodically scrapping an endpoint of the host system (pull instead of push paradigm). Once retrieved, the
information is then persisted as a log.

Health
check

Health check A health check is a procedure that helps to determine if a component is functioning correctly or not. Just like
infrastructure metrics, health checks are not logs per-se, it is an API exposed by each component to return a simple
status on the health of the component, which is queried periodically.

Submission of a contract offer by a provider to a consumer

For the sake of simplicity, application, database, system, network and security logs are grouped under the more generic term of .Technical Logs

Use Cases and Types of Logs

Use case Type of logs required Type of metrics required Description

Log and monitor business actions, mostly for audit purposes. Business logs A business log in this case represents a
specific step in a business process that is
relevant/meaningful to be tracked. E.g.
Submission of an onboarding request.

Log and monitor consumption of a resource (infra/data/app) for
various reasons (billing, audit, policy enforcement, regulations
compliance ...).

Infrastructure metrics Depending on the type of data or
infrastructure resource that is being
consumed, different metrics can be
relevant: CPU, RAM, I/O, transfer speed,
...

Technical logs For application usage and for some data
usage cases, application and database
logs will give information on what is being
done with the data/application.

Log and monitor the usage of a Simpl-Open agent (of its
components) for the purposes of audit and troubleshooting.

Technical logs All types of technical logs are relevant for
troubleshooting purposes and some may
also be relevant for audit.

Business logs A business log is generated for each
incoming and outgoing operation at the
boundaries of the agent (communication
towards Tier 1 or Tier 2 users).

Infrastructure metrics Infrastructure metrics generated by the
deployed components of the agent (CPU,
RAM, Disk, ...).

Monitor the health of the Simpl-Open agent. Health check Health is not logged but only monitored
(the monitoring queries each technical
component in real time to get its health
status).

Business Logging & Monitoring

Business logs are generated for each type of operation on the Simpl-Open agent:

For synchronous operations:
Request;
Response.

For asynchronous operations:
Request;
ACK of the request;
Callback;
ACK of the callback.

Business logs are generated in 2 places (in 2 different Elastic indexes):

The Tier 1 API Gateway for Human to Machine interactions;
The tier 2 API Gateway for M2M interactions.

Business logs contain the following fields:

Timestamp - Date and time at which the log was created;
Origin - Reference to the end-user (Tier I) or Simpl-Open agent (Tier II) that initiates the HTTP call;
Destination - Reference to the end-user (Tier I) or Simpl-Open agent (Tier II) which is targeted by the HTTP call;

d.
e.
f.

Business Operations - Reference to the operation that is triggered (List to be defined);
Message type - For both sync and async transactions, 4 types: request, request ACK, response, response ACK;
Correlation ID - ID automatically generated by the first request in a transaction and is reused by the response and ACKs to correlate
between them messages that are part of a same transaction.

Business operations reference list:

Business Process Step in BP Business Operation Technical API call/response

BP 03A 1 Submission of an onboarding request by a provider or
consumer

POST /public/onboarding-api/onboarding-request

3 - Yes Approval of a onboarding request by the Governance
Authority

POST /private/onboarding-api/onboarding-request/*/approve

3 - No Rejection of an onboarding request by the Governance
Authority

POST /private/onboarding-api/onboarding-request/*/reject

10 - Yes Confirmation of successful onboarding of a provider or
consumer

POST /private/onboarding-api/onboarding-request/*/approve

10 - No Confirmation of failed onboarding of a provider or consumer POST /private/onboarding-api/onboarding-request/*/reject

BP 05 4 Submission of a self-description to the catalogue by a
provider

POST /api/sd/enrichAndValidate

POST /api/sd/publish

12 & 17 Publication of a self-description to the catalogue by the
Governance Authority

BP 06 1 Search in the catalogue POST /api/search/v1/quick
POST /api/search/v1/advanced

6 Submission of a resource's access request by a consumer

BP 07 Submission of a contract request by a consumer to a
provider

POST /contract-negotiation/catalog

POST /contract-negotiation/negotiate

GET /contract-negotiation/negotiate

POST /contractnegotiations

Submission of a contract offer by a provider to a consumer POST /contract-negotiation/catalog

Acceptance of a contract offer by a consumer to a provider N/A

Submission of a contract agreement by a provider to a
consumer

POST /contract/v1/credentials/agreements/{contractAgreementId}
/definitions/{contractDefinitionId}

Verification of a contract agreement by a consumer to a
provider

POST /contractnegotiation/v1/signed/{contractAgreementId}/
{signed}

POST /contract/v1/credentials/agreements/{contractAgreementId}
/definitions/{contractDefinitionId}

BP 08 1 Submission of an infrastructure resource request by a
consumer

POST contract-consumption/transfer/start

5 Completion of an infrastructure resource deployment by a
provider

POST infrastructure/scripts/trigger

BP 09A 1 Submission of a request to transfer a data resource POST contract-consumption/transfer/start

6 Completion of a data resource transfer by a provider POST contract-consumption/transfer/status/{id}

6 Completion of data resource transfer by a consumer

BP 09B 1 Submission of a request to load data/application on a
provider infrastructure by a consumer

POST contract-consumption/transfer/start

8 Confirmation of a data/application resource deployment POST contract-consumption/transfer/status/{id}

Next to this predefined list of business operations, Simpl logs all incoming and outgoing requests between agents.

Technical implementation

Routes and ABAC/RBAC rules are loaded in the API Gateways through YAML files.

We will create a separate configuration YAML file that maps routes and specific parameters (e.g. HTTP 200 response code). For MVP, static configuration
will be used. After MVP it is aimed to support hot config changes.

Resource Consumption Logging & Monitoring

1.
a.
b.
c.

2.

1.
2.

1.

Consumption of a resource (infrastructure/data/application) is logged and monitored for 2 main uses cases :

Policy enforcement;
Billing.

The following (sub-)processes are considered:

Data Consumption
Direct access to the dataset (BP 09A);
Data is accessible from an infrastructure tenant (BP TBD - possibly extension of 09A);
Data is accessible through a built-in application deployed on infrastructure tenant (BP 09B);

Infrastructure Consumption (BP 08).

For each of these scenarios, below Data Usage and Infrastructure Usage sections depict the applicable types of usage policy (which also drives billing)
and how consumption can be monitored for each of them.

Data Usage

Direct access to the dataset

In this scenario, the data is shared directly between the provider and the consumer (outside of Simpl-Open) and as such no usage policy can be enforced
(only "legal enforcement" possible). It corresponds to the "allow usage of data" and "use data and delete afterwards" policies.

This also implies that billing always happens as a one-time payment, upfront of the consumption (possible extension to BP 07).

There is thus nothing that Simpl-Open agent can log or monitor during consumption.

Data is accessible from an infrastructure tenant

In this scenario, the data provider shared the data on an infrastructure tenant provisioned by an infrastructure provider.

2 types of usage policy are considered, which can be technically enforced and billed:

Based on number of usages (e.g. access the data 3 times)
Based on duration (e.g. access the data for 7 days)

In both cases, policy enforcement and billing can be performed based on the logs from the storage.

The logs (e.g. storage, bandwidth) are collected over HTTP through the S3 logging API.

Data is accessible through a built-in application deployed on infrastructure tenant

In this scenario, the data provider gives the consumer access to an application that offers restricted viewing (such as read only) or processing capabilities
over the data resource. Only Scenario 1 is considered (a stand-alone application will be deployed on a dedicated infrastructure resource per consumer).

1 type of usage policy is considered, which can be technically enforced and billed:

Based on duration (e.g. access the data for 7 days)

In this case, monitoring the status of the underlying infrastructure resource is sufficient.

Architecture assumptions:

It is assumed that VM and containers always have an attached storage;
It is assumed that Simpl-Open only supports natively S3-compliant storage but is extensible to support other storages (offering an API).

The exact list of logs that will be collected by Simpl-Open and the mechanism to collect these logs are still to be defined based on what is
offered by the S3 logging API.

Architecture assumptions:

It is assumed that the application is always deployed and terminated together with the infrastructure resource as part of deployment
script;
It is assumed that Simpl-Open only supports natively applications deployed on Kubernetes but is extensible to support other platforms
(offering an API).

1.
2.

1.
2.

To do so, the following 2 options exist:

Collecting log files from the infra resource;
Collecting logs from the infrastructure provider API.

The first option could be more restrictive as it requires access to the infrastructure resource itself.

Simpl-Open therefore implements option 2 and collects logs through the kube-api exposed by the infrastructure provider.

Infrastructure Usage

2 types of usage policy are considered, which can be technically enforced and billed:

Based on duration (e.g. access to a VM for 7 days);
Based on resource utilisation (e.g. CPU, RAM, storage, bandwidth).

In the first case, monitoring the status of the infrastructure resource is sufficient and in the second case, it requires access to infrastructure metrics of the
resource.

Both status of the resource and infrastructure metrics can be collected through the infrastructure provider APIs:

S3 API for storage;
kube-api for containers;
VMWare API for VMs.

Reporting

DevSecOps Approach
This gives an overview of the architecture for the DevSecOps tools and environments for Simpl-Open. The following diagram is taken over from section
Specific Contract 1 - Terms of reference

which provides an overall view of required DevSecOps approach completed with the relevant choices of tools/technologies in our implementation.

Architecture assumptions:

It is assumed that Simpl-Open only supports natively:
S3-compliant storage
Kubernetes containers platform
VMWare virtual machines

but is extensible to support other platforms (offering an API).

The exact list of logs/metrics that will be collected by Simpl-Open and the mechanism to collect these logs are still to be defined based on what
is offered by the APIs.

This section is only a placeholder for capabilities falling behind the scope of the MVP (December 2024) and will be completed at a later time.

Overview

This below shows the main components of the DevSecOps toolchain to comply with the above mentioned approach for the architecture diagram used
development of Simpl-Open.

The CI/CD pipeline to build and test the applications and components, as well as the code repositories, are on a GitLab instance on code.europe.central
eu.

OVH is used for the different Kubernetes clusters:

Dedicated cluster with various namespaces for development;
Dedicated cluster with various namespaces for integration;
Dedicated cluster with various namespaces for end-to-end testing;
Dedicated clusters for Keycloak identity management, Gitlab Runners, DevSecOps tools and DevSecOps tool testing (staging env for
DevSecOps tools) .

For tickets, test cases and test reports are Jira is set up together with Xray for test management.

The diagram reflects the current status of the toolchain, with planned elements shown shaded.

Planning and Design of Clusters

The DevSecOps team teams. It is responsible for the setup of the Kubernetes clusters on OVH provides the infrastructure resources to the development
and the management of those.

The cluster "Dev-components" is set up as the development environment. Each team gets isolated name space(s) to run their services.

To avoid vendor-lock-in, it is proposed to avoid using managed services on OVH like managed databases. This guarantees that the designed solution will
also work on other cloud platforms without modifications needed.

The DevSecOps team manages the clusters via Rancher and provides access to the projects & namespaces to only the team members of the product
streams.

The expected workload for each of the environments is estimated based on the input from the different development team and used for initial cluster sizing.

The table below shows the different stages and what they are used for.

Stage Purpose Data Operations Level Agreement Target User Group

(responsible for deploy)

Release Management Deployment Strategy (When are releases applied)

Dev
The
devel
opme
nt
stage

Sy
nt
he
tic,
m

n/a
Developers of
consortia members
QA engineers for
testing

dev versions, e.g.
0.0.4-snapshot

Daily and continuous builds from develop branch
and/or feature branch

is
where
new
featur
es
and
enhan
ceme
nts
are
devel
oped
and
tested;
Isolat
ed
Simpl
produ
ct
teams
dev
enviro
nment
s
(opt:
conne
cted
to
featur
e
branc
hes);
No
involv
ement
in
comm
ercial
applic
ations.

an
ua
lly
cr
ea
te
d
da
ta
pe
r
de
v
te
st
to
co
nd
uc
t
fu
nc
tio
na
l
te
sti
ng
of
th
e
in
div
id
ua
l
pr
od
uc
t.
(F
or
fur
th
er
de
tail
s
se
e
Te
st
Pl
an)

Int
The
int
stage
is
dedic
ated
to
compr
ehens
ive
testin
g of
featur
es
and
fixes
before
they
are
promo
ted to
releas
e
branc
h;
Used
for
functi
onal
testin
g of

Sy
nt
he
tic,
m
an
ua
lly
cr
ea
te
d
da
ta
pe
r
de
v
te
st
to
co
nd
uc
t
fu
nc
tio
na
l
te

n/a
QA engineers for
testing

release candidate
versions

Manual sync for srelease candidate

API
end-
points
and
correc
t
intera
ction
betwe
en
differe
nt
comp
onents

sti
ng
of
in
div
id
ua
l
pr
od
uc
t;
M
ay
us
e
sa
niti
ze
d
pr
od
uc
tio
n
da
ta.
Th
e
sa
niti
za
tio
n
pr
oc
es
s
wil
l
en
su
re
no
se
nsi
tiv
e
inf
or
m
ati
on
wil
l
be
us
ed.

Pre-
Prod The

pre-
prod
stage
serve
s as
a pre-
produ
ction
enviro
nment
where
the
valida
tion
of the
syste
m's
end-
to-
end
workfl
ows
(End-
to
end
testin

Su
bs
et
of
pr
od
uc
tio
n
da
ta
or
re
pr
es
en
tat
ive
da
ta
to
si
m
ul
at
e
th

n/a
E2E testing team stable release

versions
manual sync for released versions
Aimed to automate as much as feasible as
maturity grows

1.

2.

g)
are
taking
place
from
user
scena
rio
point
of
view;
Also
this
stage
is
respo
nsible
for all
non
functi
onal
testin
g
(load
/stres
s
testin
g,
securi
ty
testin
g by
DAST)

e
pr
od
uc
tio
n
en
vir
on
m
en
t
ac
cu
rat
ely;
Da
ta
wil
l
be
sa
niti
ze
d
or
an
on
y
mi
ze
d
to
pr
ot
ec
t
se
nsi
tiv
e
inf
or
m
ati
on
wh
ile
pr
es
er
vin
g
th
e
int
eg
rit
y
of
th
e
da
ta
se
t.

Cluster Provisioning and Setup

Environment Onboarding Process

If a Dev-Team needs a new environment for any stage, they need to create an issue in the following Gitlab repo: Simpl/Operations/Environment-
onboarding.

The DevSecOps team will create the environment with the default tool stack and grant access to it afterwards.

Process Description:

Create project in Rancher in the desired cluster (dev, int, ...);

2.
3.
4.

Deploy default toolstack (ingress etc.);
Create project in ArgoCD;
Grant access to Rancher project and ArgoCD project.

Security and Access Control
The following best practices are used to secure the environments.

Access Management

Access is granted / based on the process described below.revoked

Definition of Basic roles (as tracked in PMO master list)

User role name Description

ADMIN Role for the operation of the DevSecOps toolchain

PSO/ EC Members of PSO accessing the DevSecOps toolchain for quality assurance purposes

DEVELOPER Developers who will use the DevOps pipeline for development activities

LEAD DEVELOPER Developer with code ownership and elevated security privileges

DEVELOPER OPS Developers with elevated infrastructure privileges

LEAD DEVELOPER OPS Developers with code ownership and elevated security + infrastructure privileges

TESTER Testers who will take part in the testing of developed code

Mapping of basic roles

This table shows the mapping between the basic roles and the internal roles within each tool.

Tool (with internal Roles)

Basic Role

code.europe.eu Argo CD

(ADMIN, DEV, READ-ONLY)

Rancher

(ADMIN, Project Member, Read-Only)

Vault

(ADMIN, DEV, DENY-ALL)

Fortify

(Security Lead (Admin), Developer, Lead Developer, Tester)

everyone on PMO master list
(non-need for any
specific DevSecOps role)

DEVELOPER on
SIMPL group level

(subject to self-
registration)

n/a n/a n/a n/a

ADMIN MAINTANER is set
manually for
DevSecOps team

ADMIN for ArgoCD ADMIN ADMIN Security Lead (Admin)

PSO DEVELOPER on
SIMPL group level

(subject to self-
registration)

READ-ONLY READ-ONLY DENY-ALL n/a

DEVELOPER DEVELOPER on
SIMPL group level

(subject to self-
registration)

Project Member

(per project)

n/a n/a Developer

(per application)

LEAD DEVELOPER DEVELOPER on
SIMPL group level

CODEOWNER in
repository

(subject to self-
registration)

Project Member

(per project)

n/a n/a Lead Developer (including Developer rights)

(per application)

DeveloperOps DEVELOPER on
SIMPL group level

(subject to self-
registration)

Project Member

(per project)

Project Member

(per project)

DEV

(per project)

Developer

(per application)

TESTER DEVELOPER on
SIMPL group level

(subject to self-
registration)

READ-ONLY n/a n/a Tester

Keycloak is used as central instance for the user management and providing the login mechanisms for the different tools:

Security Checks

Application security scans will be done by Fortify on Demand (FoD). The scope are the following:

Static Application Security Test (SAST);
Static Component Analysis (SCA);
Container Scanning
Dynamic Application Security Test (DAST).

SAST (Static Application Security Testing) is a method of testing the source code of an application for security vulnerabilities without executing the
application. It's a type of white-box testing that analyzes the application's internal structures and logic on code level for flaws that might lead to security
risks and vulnerabilities. Main advantages of using SAST:

Enables detection and remediation of vulnerabilities early in the Software Development Lifecycle (SDLC), reducing costs and risks;
Can analyze the entire codebase, providing a comprehensive security assessment;
Helps the project to comply with security standards like OWASP, , and othersPCI DSS

WHEN: SAST is performed on every commit/merge

WHAT: the source code is scanned

WHERE: during the development lifecycle

WHO: the pipeline is starting the analysis automatically

Fortify is integrated with the central component development pipeline which triggers Static Application Security Test (SAST) when new code is merged in
the repository by the development or the integration teams. For feature branch a scan can be requested manually. Results of the scan is shown on the
dashboard of Fortify. Developers can review the results of their components and handle identified vulnerabilities in the next version of the code. A quality
gate set in Fortify must be met for the pipeline to merge the code to the main branch.

SCA (Software Composition Analysis) is a process used to identify and manage risks associated with the use of third-party and open-source software
components in an application. It is a critical aspect of modern software development, as applications increasingly rely on external libraries and frameworks.
Main advantages of using SCA:

Protects the Simpl agent by identifying and addressing vulnerabilities in external components;
Mitigates legal risks from improper use of open-source licenses;
Automates tracking and reporting of third-party components.

WHEN: SCA is performed on every commit/merge

WHAT: third parti libraries are scanned

WHERE: during the development lifecycle

WHO: the pipeline is starting the analysis automatically

SCA is integrated with the same approach as SAST using the debricked service of the Fortify online platform.

refers to the process of analyzing and inspecting container images for security vulnerabilities, compliance issues, malware, and other Container scanning
potential risks before they are deployed in a production environment. Here’s a brief overview:

Purpose: The primary goal is to ensure that containers are free from known security vulnerabilities and adhere to organizational security policies.
This helps in maintaining the integrity, confidentiality, and availability of applications running inside these containers.
Components Scanned:

Base Images: Checking if the base images from which containers are built have any known vulnerabilities.
Dependencies: Examining all the software libraries and dependencies included within the image for vulnerabilities or outdated versions.
Configuration: Assessing the container's configuration files for potential security misconfigurations.

WHEN: container scanning is performed in the development lifecycle at every branch and i every commit/merge

WHAT: the containers and images used are scanned

WHERE: during the development lifecycle

WHO: the pipeline is starting the analysis automatically

DAST () is a method used to identify security vulnerabilities in an application by analyzing it during runtime. It Dynamic Application Security Testing
simulates attacks on a running application, typically from an external perspective, to uncover vulnerabilities that can be exploited in real-world scenarios.
Main advantages of using DAST:

Identifies vulnerabilities of the Simpl software as an attacker would exploit them
Finds issues related to application logic, runtime behavior, and server configuration.

WHEN: at the end of the development lifecycle, after e2e testing.

WHAT: DAST is performed on the Agents.

WHERE: DAST is performed in the pre-prod enviornment

WHO: the end2end team is responsible for configuring and running the scans

DAST is implemented using the webinspect service of the Fortify online platform.

While SAST, SCA and Container Scanning are integrated in the component pipeline and used on component level, DAST will be triggered manually after
deployment of the integrated Simp agent in the pre-prod environment and the completion of preparational steps. This testing type may require the runtime
of up to 2-3 days by Fortify. Once the testing is complete the Fortify dashboard will provide and overview of the results. Similarly to SAST and SCA
developers can review the identified issues and act on them as necessary.

Kubernetes best practices

In order to set up a flexible and scalable environment for managing our containerized applications, Kubernetes has been identified as the best fit
technology. Primary reasons for the choice are:

vendor neutral platform;
support of microservices infrastructure;
autoscaling capabilities to handle growing and fluctuating workloads;
support for DevSecOps;
support of multi-tenant environments;
high availability.

Main features of Kubernetes:

: Defined network policies Network Policies network policies to control traffic within the cluster; OVH provides a default set of policies. Inside the
Kubernetes cluster we use ingress and egress isolation for pod level according to the specific needs of the cluster.

https://kubernetes.io/docs/concepts/services-networking/network-policies/

1.
2.
3.

4.
5.

: Usage ofSecret Management Kubernetes Secrets and/or Vault to store sensitive data securely. Secrets used in the pipeline are stored in an
external tool like Vault;

: Implemented RBAC Role-Based Access Control (RBAC) to manage access to cluster resources based on user roles; Keyclaok groups are
mapped to Rancher projects to ensure proper isolation of namespaces. User roles are mapped to Keycloak groups/roles.

: Usage of Service AccountsService Accounts to authenticate and authorize pods;
: The integrity and security of container images is verified before deployment in the pipeline; This is done by using Trivy/Fortify Image Scanning

triggered by the pipeline.
: To keep the Kubernetes distribution and components up-to-date with the latest security patches regular updates Regular Updates and Patching

are done. Since Kubernetes is a managed service, updates are made available by OVH. Admins regularly check update options and decide to
stay with current version or update.

Continuous Deployment and GitOps

This section outlines the implementation of continuous deployment (CD) and GitOps in Simpl-Open using GitLab CI/CD, Helm Charts, Argo CD, and
multiple environments.
The goal is to automate the release management process, ensuring consistent and reliable deployments across various environments.

Architecture

The architecture consists of:

GitLab: The source code is managed on the GitLab instance at . There also the CI/CD pipeline is used;code.europa.eu
Helm Charts: Package managers for Kubernetes applications;
Argo CD: A continuous deployment tool for automating the application release process for the development, integration and pre-prod
environments
Fleet Management: A K8 concept and tool to centrally manage DevSecOps tools, agents, components on the every clusters in the landscape.
Multiple Environments: The deployment is done into multiple environments.

GitFlow

The project uses , as a branching strategy for Git repositories designed to streamline collaboration and manage releases in software projects. GitFlow
Giflow has become widely adopted in software development workflows, especially for projects with regular release cycles.

The advantages of the Gitflow approach:

Clearly defines branches for development, features, releases, and hotfixes;
Makes it easier for teams to work on different features or issues simultaneously;
Facilitates managing multiple releases and hotfixes.

Artefacts should be versioned according to the Semantic Versioning Concept.

The in Simpl is depicted in the following diagram:Gitflow approach

https://code.europa.eu

1.
2.
3.
4.
5.

Explanation for the :branches

main: The main branch, which represents the production-ready code;
develop: The development branch, where new features are developed and tested;
feature/*: Feature branches for specific tasks or fixes;
release: Release branch for release candidates;
hotfix: Forked from tags of the main branch used for urgent fixes.

In Gitlab (code.europa.eu) the main and develop branches are set up as protected. Merge to main can be initiated from develop, release and hotfix.
Developers remove release and hotfix following the merge of the updated code to main. Develop is only allowed to merge code from feature/* (for instance
feature/SIMPL-1234). Developers remove the feature branch after merging to develop.

CI/CD Pipeline

The pipeline is using GitLab CI/CD. The are multiple steps included to ensure proper testing and security before the deployment:implemented

Pipeline features:

Building the Code: Compile the source code into executable binaries or artifacts;
Perform Unit Testing: Execute automated tests to verify individual components of the codebase for correctness;
Create package for distribution: Bundle the application into distributable formats like jar and publish to the GitLab artifacts;
Perform Quality Testing with Sonar: Perform static code analysis to identify code quality issues and technical debt;
Build and Push Docker Image: Create a Docker image from the application and push it to the GitLab Container registry;
Perform Image Scan and produce SBOM: Scan the Docker image for vulnerabilities and compliance issues using , list all dependencies Trivy
created with Trivy and Fortify;;
Perform SAST (Static Application Security Testing)/SCA (Software Composition Analysis) : Analyse the source code for security
vulnerabilities without executing the code using Fortify;
SCA (Software Composition Analysis): Identify and analyze open-source components (dependencies scanning) for known vulnerabilities using
Trivy for image scanning and Fortify for dependencies;
Release reports, Java package and Helm Chart: Update the version, package and release a Helm chart for Kubernetes deployments in the
GitLab Package Registry;

1.

2.

3.

1.
2.
3.
4.

1.
2.

Pipeline runs can be tracked on the UI of Gitlab. Issues are indicated by the progress diagrams on the UI, details are provided by Gitlab based on the logs
of the failing jobs.

Release Management

The release management process will be carried out on two distinct level (App of Apps concept):

Unitary Component development
Agent Components (integration and pre-prod)

The following diagram shows the overall process:

As shown in the diagram there are multiple stages with different environments:

Development Environment: The development environment is where new features and enhancements are developed and tested on component
level;
Integration Environment: The integration environment is dedicated to integration activities and integration testing before they are promoted to
pre-prod;
Pre-Prod Environment: The pre-prod environment serves as an environment where features are integrated and tested together as a cohesive
unit, end to end. This is where load testing is taking place.

A Production environment is not planned for Simpl-Open, just for Simpl-Labs and Simple-Live.

As an overall concept, the release management process is automated using GitLab CI/CD and Argo CD:

Prepare a Release: A new release version is created following the GitFlow approach on GitLab;
Build and Test: The extended pipeline stages run to validate the release quality, including E2E testing and extensive security scanning;
Deploy: Argo CD deploys the release to the target environment;
Verify: Verify the deployment by running tests and monitoring application logs.

Helm Charts

Helm Charts are used to manage components and Kubernetes applications. Similarly Helm Charts define the application on Agent level.

Chart Management: Helm Charts are managed using GitLab CI/CD, allowing for automated updates and versioning;
Deployment: Helm Charts are deployed to the target environment using Argo CD.

1.
2.

3.

1.

Component development teams release their component by a Helm Chart. By the application of the App of Apps concept, on Agent level (App) we define
and manage the individual components (Apps). This is ensured by the configuration of Helmcharts in a hierarchical manner (Agent level configuration
overwrites component level configuration).

Benefits of the App of Apps Concept

Scalability: Simplifies managing a large number of components in complex agents;
Centralized Management: Enables a single point of control for all components;
Flexibility: Supports managing components across multiple environments or clusters;
Modularity: Each component remains independently manageable, facilitating updates and troubleshooting;
GitOps Alignment: Integrates seamlessly with GitOps workflows for declarative management.

Argo CD

Argo CD is used to automate the deployment process. It is deployed in each environment to support the release process.

Application Definition: Define applications in Argo CD's configuration file (application.yaml);
Source Code Management: Argo CD manage automatic deployments. Deployments happen based on the following triggers: by repo source
code change, package registry change and manually. Dev team have the freedom to configure this for their components.
Deployment Strategies: Choose deployment strategies for each application, such as rolling updates or blue-green deployments.

Testing

The testing process is separated into different phases which are shown in the diagram below. The full test process is described in the testing document.

Monitoring and Logging

Monitoring and logging tools are used to track application performance and detect issues:

1.

2.

3.
4.

Prometheus: A monitoring tool that collects metrics from the environments/ tools and stores them in a timeseries database; Deployed as agent
on all clusters.
Grafana: A visualization tool that displays dashboards based on Prometheus data. Centrally deployed on the DevSecOps-tools cluster as a
central instance.
Promtail: will be deployed on the clusters as an the agent to discover and gather logs.
Loki: will be deployed to centrally aggregate and manage collected logs.

Prometheus agents will be deployed to all Kubernetes clusters and connect to the central Prometheus instance (on the DevSecOps tool server) to
consolidate metrics. Grafana, deployed on the DevSecOps cluster will use the data available for the Graphana central instance to visualize data.

Metrics data is retained for 1 months.

Currently Email based alerting mechanism is set up in Grafana to notify operators for events configured in the tool.

Further extension of the infrastructure will be done with the deployment of Promtail and Loki.

Backup and restore

On the Kubernetes clusters Velero is used for backing up and restoring persistent volumes . The tool is deployed on the following clusters:

Cluster Backup policy

dev-components WEEKY, DAILY

devint-agents WEEKY, DAILY

devsecops-keycloak NONE

devsecops-runners WEEKLY

devsecops-tools WEEKY, DAILY

devsecops-toolstest NONE

preprod-agents WEEKY, DAILY

Backup is done for the specific Namespaces configured for the process.

Data restoration is carried out with the same tool.

Deprovision of Environments

Deprovisioning refers to the process of removing or deleting resources that were initially provisioned. In this context, it involves removing the application
from the Kubernetes clusters across different environments and deleting the infrastructure managed by Terraform.

For Simpl there are two steps for the deprovisioning: One for the application and the second for the overall infrastructure to shut down Simpl completely.

Step 1: Application Deprovisioning

The application deployed via ArgoCD can be removed by deleting the relevant application resource. This can be achieved using the ArgoCD CLI or the
ArgoCD API.

Please note that this process has to repeated for every instance of the application running on different Kubernetes clusters within each environment.

Step 2: Infrastructure Deprovisioning

Terraform maintains an up-to-date state file that reflects the current state of the infrastructure. To deprovision the infrastructure, it needs to be destroyed
using Terraform.

Terraform offers the `destroy` command to delete the infrastructure which was deployed by Terraform. The command compares the state file to the current
infrastructure and removes everything that exists.

The command has to be executed for each of the environments separately. This can be done exclusively be the admins of the DevSecOps team for each
environment.

If the infrastructure including the DevSecOps-Tools-Cluster is destroyed, also the managed applications like Keycloak, Vault etc. are deleted. Any
necessary data must be backed up before this process is started.

Annexes

Annex 1 - Glossary of Terms

This section provides a comprehensive list of terms and definitions essential for understanding Simpl's terminology.

Term Definition

(Simpl-
Open)
Agent

An agent is a deployed instance of Simpl-Open that serves as a local gateway towards the data space services.

Access
Policy

Access policies are rules and conditions prepositioned as to how the provider wants to control the service. The access policy allows you to
configure operations, permissions, access rules, and selection rules that restricts/allow certain access to a service.

Applicant An "applicant" refers to an entity that submits an application or request to join a data space. This term is typically used in contexts where a
selection or approval process is in place. Applicants are at the initial stage of engagement with the data space, seeking approval or
acceptance which is based on the criteria and procedures set by the Data Space Governance Authority

Applicati
on
Catalogue

Application providers publish their service descriptions to the application catalogue which can be queried and discovered by consumers.

Authenti
cation
provider
federation

An Authentication Provider Federation is a collaborative arrangement between multiple authentication providers that enables users to
authenticate seamlessly across different systems, organisations, or services using a unified and interoperable framework. This federation
facilitates the sharing of authentication credentials and ensures a consistent and secure authentication experience across various platforms.

Capability Capability refers to the inherent power, capacity, or potential of the data space to perform specific tasks or achieve certain outcomes. This
could involve the ability to integrate, analyse, and share data across different systems, the capacity to handle large volumes of data, or the
potential to support complex data-driven processes.

Catalogue The catalogues enable the discovery of services within the data space.

Consent ‘Consent’ of the data subject means any freely given, specific, informed and unambiguous indication of the data subject's wishes by which
he or she, by a statement or by a clear affirmative action, signifies agreement to the processing of personal data relating to him or her; (GDP
R Art. 4(11))1

Contract
Offering

A contract offering is a promise made by the Provider to the Consumer (the offeree) to provide a service under certain conditions, quality
KPI for a certain agreed price.

Such an offering could, for example, consist of:

SLA Agreement that guarantees the quality of service;
A License agreement on which terms and conditions the service can be consumed;
A Billing schema on how the service is invoiced and the pricing.

CRUD
interface

A set of backend API and fronted UIs that realise the Create, Read, Update and Delete operations on a specific entity

Data
access
policy

A data policy defined by the data rights holder for the access of their shared data in a data space.1

Explanatory text:

A data access policy that provides operational guidance to a data provider for deciding whether to process or reject a request for providing
access to specific data. Data access policies are created and maintained by the data rights holders.

Data
Catalogue

Data providers publish their service descriptions to the data catalogue which can be queried and discovered by consumers.

Data
policy

A set of rules, working instructions, preferences and other guidance to ensure that data is obtained, stored, retrieved, and manipulated
consistently with the standards set by the governance framework or data rights holders .1

Explanatory text:

Data policies govern aspects of data management within or between data spaces, such as access, usage, security, and hosting.

Data
space

A distributed system defined by a governance framework that enables secure and trustworthy data, application, and infrastructure
transactions between participants while supporting trust and sovereignty. A data space is implemented by one or more infrastructures and
enables one or more use cases.1

Data
space

A party that has committed to the governance framework of a particular data space and may have one or more roles in it.

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&qid=1695204484632#d1e1489-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&qid=1695204484632#d1e1489-1-1

participa
nt

Data
usage
contract

An agreement between a data rights holder or data provider, and a data recipient specifying the terms and conditions of a data exchange,
which may refer to specific data policies.1

Explanatory text:

The term data usage contract can also be used for usage contracts related to data services.

Digital
signer
role

Digital signer role is an extended role (in Tier 1) that identifies the end users who are able to digitally sign in on behalf of a participant.

End user An end user is either:

a real person (human actor) that interacts with the Simpl-Open agent mostly through the UI;
an IT system (machine actor) that interacts with the Simpl-Open agent through APIs.

Feature A feature is a distinctive attribute or characteristic of the data space platform that contributes to its overall functionality. Features are specific
aspects or components designed to provide particular services or tools to users, enhancing the user experience or enabling specific
operations.

Function
ality

Functionality refers to the range of operations and tasks that the data space is designed or expected to perform. It encompasses the
practical uses and applications of the data space, ensuring that it serves its intended purpose effectively. Functionality includes both the
basic operations (e.g., data storage, data querying) and more complex operations (e.g., automated data processing, real-time data
analytics) that the data space may support.

Identity
Attribute

Identity Attributes are the characteristics or values of a Simpl-Open agent (e.g. "Data Provider Publisher" or "Basic Access Level") involved
in an access event. Identity Attributes ABAC are used to enforce (attributes-based access control) in the agent-to-agent communication (tier
2).

Identity
Authorit
y
(compon
ent)

The identity authority is a potential module of the Governance Authority and is responsible for establishing, maintaining, and verifying the
identity of participants within that data space.

Identity
provider
federation

An dentity Provider Federation is a collaborative arrangement between multiple identity providers that allows for the sharing and mutual I
recognition of user identities across different organisations, domains, or services. This federation enables users to use a single set of
credentials to access multiple systems or services, thereby simplifying the authentication process and enhancing user convenience while
maintaining security and trust.

Infrastru
cture
Catalogue

Infrastructure providers publish their service descriptions to the infrastructure catalogue which can be queried and discovered by consumers.

Onboard
ing
request
(request
for
onboardi
ng)

An onboarding request is a formal application submitted by an entity (the applicant) to join a data space.

Ontology An ontology is a formalised and structured knowledge within a specific domain. It includes the concepts (also called the vocabulary) as well
as the relationships between the concepts. For the use of the automatic validation, the ontology should be provided in an RDF Schema
(RDFS) or Web Ontology Language (OWL) specifications.

Participa
nt

A "participant" is an entity that has successfully passed the approval or acceptance in the application process and is now actively involved
or engaged in the services offered by the applied data space. Participants are either governance authority, data providers, application
providers, infrastructure providers or consumers.

Policy Policies define rules that Providers want to enforce in order to control the access and usage of their resources.

Quality
Rules

Quality rules can be defined as a set of guidelines, standards, or criteria used to assess and ensure the quality of a self-description.

Explanatory text:
Data quality rules are a formal and structured definition of required quality of the resource description. These rules include assessing
completeness, consistency, correctness, and other quality aspects, e.g., defined in ISO 25012. The checks go beyond semantic
conformance, such as identifying inconsistencies between data instances, detecting redundant information, or verifying data integrity. The
data quality rules can be classified into mandatory rules and recommended rules. Mandatory rules need to be fulfilled completely for all
instances, e.g., the creation date should never be after the update date. For the recommended rule it is possible to define a threshold on
how many instances need to fulfil the rule, e.g., it is preferable to provide 4 keywords.

Represe
ntative

A "representative" refers to the human end user that takes actions on behalf of a participant, such as the: consumer, provider, or
governance authority. The representative is special type of end user that represents the participant in the data space.

Resourc
e
descripti
on

Resource description refers to the metadata records that describe various resources, allowing identification, searchability, access
management, preservation, and prediction of resource behaviour. These resources can include data, applications, or infrastructure.

Role
Attribute

A role attribute refers to a specific property or characteristic assigned to a user role within a system. A role defines a set of permissions or
access rights that a user has within the software, and role attributes provide additional details or constraints that customise or refine these
roles.

Security
attribute
provider
federation

A Security Attribute Provider Federation is a collaborative network of multiple security attribute providers that enables the sharing and
management of security-related attributes across different systems, organisations, or services. This federation facilitates a unified approach
to attribute management, enhancing security, interoperability, and user experience in various environments.

Self-
descripti
on
(Technic
al term
for
'resourc
e
descripti
on')

A metadata record that providers use to describe themselves, their data product offerings, and the resources and services their data
products are composed of.1

Explanatory text:

The representation of these metadata must be comprehensible for the data space enabling services that manage self-descriptions through
their lifecycle, as well as for data users and any software that assists them.

Semanti
c
validation

Semantic validation involves verifying the data types and some constraints (like mandatory, cardinality, consistent with a vocabulary) for the
different properties in the self-description.

Example: Ensuring that a date of birth field contains a valid date that is in the past and not in the future.

Simpl-
Open

Open-Source Smart Middleware Platform for Cloud-to-Edge Federations and Data Spaces.

Syntax
validation

Syntax validation refers to the process of checking if the resource description conforms to the defined syntactical rules and formats. It
ensures that the input is correctly structured according to the required grammar and patterns.

Example: Ensuring that a JSON file is properly formatted with matching brackets and correct key-value pairs.

Usage
Contract

A usage contract is the signed agreement between a provider and a consumer, that stipulates the type of services a provider offers to the
consumer and includes the conditions and policies the service, provider, and consumer needs to adhere to.

The usage contract is formed and signed by both the Provider & Consumer during the contract negotiation process. The usage contract is
afterwards used as an immutable credential by the Provider and the Consumer.

Usage
Policy

Usage Policies are policies defined by the provider for the usage of their resource in a data space. The policies regulate the permissible
actions and behaviors related to the utilisation of the accessed data/application/infrastructure.

A usage policy defines what actions can be undertaken on a resource by what consumers and under what constraints.

Vocabul
ary
Provider
(compon
ent)

The vocabulary provider defines the ontologies and vocabularies that are standardised in the data space.

1https://dssc.eu/space/Glossary/176553985/DSSC+Glossary+%7C+Version+2.0+%7C+September+2023

Annex 2 - Mapping between functional requirements and components

While L2 requirements are mapped to functional requirements through the use of components in Jira, the below table provides an extract from this
mapping.

Requirem
ent ID

Summary Component/s

SIMPL-
6122

Data Visualization Data Transfer, Infrastructure Management

https://dssc.eu/space/Glossary/176553985/DSSC+Glossary+%7C+Version+2.0+%7C+September+2023

SIMPL-
6109

Access policy enforcement EDC Connector

SIMPL-
6100

Requesting an infrastructure resource Infrastructure Management

SIMPL-
5396

Request a data resource Data Space Connector, Data Transfer

SIMPL-
4889

Publishing self-description Federated Catalogue, Resource Offering
Editor

SIMPL-
4497

Returning query results Federated Catalogue, Search

SIMPL-
4495

Filter search result based on access policy Federated Catalogue, Search

SIMPL-
4422

Monitoring Simpl-Open agent infrastructure
technical logs

Observability

SIMPL-
4417

Automated deployment of Simpl-Open pre-
configured monitoring dashboard

Observability

SIMPL-
3995

Define the onboarding process documentation Onboarding

SIMPL-
3886

Monitoring Simpl business logs Observability

SIMPL-
3381

The Usage Contract Agreement stored in machine
readable format

Contract Management

SIMPL-
3370

Usage contract signature Contract Management

SIMPL-
3363

Contract negotiation protocol Contract Management, Data Space
Connector

SIMPL-
2949

Simpl shall log all business actions in the central
logs repository

Observability

SIMPL-
2946

Log Simpl agent infrastructure metrics Observability

SIMPL-
2945

Store technical logs of the infrastructure on which
Simpl-Open is deployed in a log repository

Observability

SIMPL-
2941

Simpl shall store technical logs of agent (software)
components in a log repository

Observability

SIMPL-
2921

Monitoring Simpl-Open agent infrastructure metrics Observability

SIMPL-
2916

Pre-configured monitoring dashboard Observability

SIMPL-
1789

Integration with Cloud APIs through Crossplane Infrastructure Management

SIMPL-
1784

Data sharing Data Space Connector, Data Transfer

SIMPL-
1748

End user authentication process - api IAA

SIMPL-
1745

Roles management operations IAA

SIMPL-
1739

Triggering Mechanism Data Space Connector, Federated
Catalogue, Infrastructure Management

SIMPL-
1738

Infrastructure Specific Features Infrastructure Management

SIMPL-
1734

Advance search - Search parameters compliant with
constraints and vocabularies

Schema Management, Search,
Vocabulary Management

SIMPL-
1720

Search Results Limitation Search

SIMPL-
1719

Advanced Search Federated Catalogue, Search

SIMPL-
1715

Access policy definition Resource Offering Editor

SIMPL-
1705

Uploading self-description Federated Catalogue, Resource Offering
Editor

SIMPL-
1704

Creating self-description Resource Offering Editor

SIMPL-
1699

Syntax Validation Federated Catalogue, Resource Offering
Editor, Schema Management

SIMPL-
1698

Validation of a resource description - feedback to
the provider

Federated Catalogue, Resource Offering
Editor, Schema Management

SIMPL-
1696

Mandatory quality rules Federated Catalogue

SIMPL-
1689

Users and roles configuration Onboarding, IAA

SIMPL-
1687

Credentials installation and review - status and
information

Onboarding, IAA

SIMPL-
1686

Credentials installation and review - services Onboarding, IAA

SIMPL-
1684

Credential request - tracking by participant Onboarding, IAA

SIMPL-
1683

Credential creation Onboarding, IAA

SIMPL-
1682

Create credential request Onboarding, IAA

SIMPL-
1681

Attribute selection Onboarding, IAA

SIMPL-
1679

Onboarding requests - rejection support Onboarding, IAA

SIMPL-
1677

Onboarding requests - manual approval support Onboarding, IAA

SIMPL-
1676

Onboarding requests - verification support Onboarding, IAA

SIMPL-
1674

Onboarding request - tracking by applicant Onboarding, IAA

SIMPL-
1673

Register onboarding application Onboarding

SIMPL-
1672

View the onboarding process documentation and
initiate the onboarding

Onboarding

SIMPL-
1654

Participants detail operations - services Onboarding, IAA

SIMPL-
1653

Participants detail operations - workflow Onboarding, IAA

SIMPL-
1650

Participants list IAA

SIMPL-
1616

Authentication between participant agents IAA

SIMPL-
1615

Ensure ABAC compliance IAA

SIMPL-
1614

Controlling communication between participants IAA

SIMPL-
1613

Tier 2 attributes management - services Onboarding, IAA

SIMPL-
1612

Tier 2 attributes management - workflow IAA

SIMPL-
514

Assign Contract Template Contract Management, Resource
Offering Editor

SIMPL-
503

Access policy publication Resource Offering Editor

SIMPL-
500

Semantic Validation Federated Catalogue, Schema
Management, Vocabulary Management

SIMPL-
469

Quick Search Federated Catalogue, Search

SIMPL-
415

Enforce usage policies Contract Management, Data Space
Connector

SIMPL-
409

Assign usage policy Resource Offering Editor

SIMPL-
402

Create usage policy Resource Offering Editor

Annex 3 - Non-Functional Requirements

This section provides an initial list of requirements stemming from the Simpl-Open tender specifications and which could drive elicitation of Simpl-Open
non-functional requirements.

Req ID CFN.001

Short Title Interoperability with existing solutions

Description Simpl shall provide the mechanisms to interoperate with existing solutions, such as the EOSC middleware
functionalities, CEF BBs, specific data space solutions, and other artefacts.

Priority M

Related architectural component(s) Multiple

Source Preparatory Study "Final Business Requirements" Framework Contract

Baseline technologies API

Baseline component New

Req ID CFN.006

Short Title Business continuity and disaster recovery

Description Simpl shall offer the appropriate mechanisms to ensure its business continuity. Based on the monitored

1.

2.

1.

2.

values of the status of the services where it is deployed, as well as the health of its components at all times,
Simpl shall take the appropriate actions to provide (semi-automatic) self-healing mechanisms. In the event
that automatic self-healing mechanisms cannot be launched, an alarm shall be raised.

Priority M

Related architectural component(s) Orchestration

Source Preparatory Study "Final Business Requirements"

Baseline technologies AI techniques to detect anomalies and concept drifts. Decision Support Systems for the decision-making on
the self-healing mechanisms are to be applied.

Baseline component Orchestrator (Kubernetes, OpenNebula or similar)

Req ID CFN.009

Short Title Infrastructure agnostic

Description Simpl shall be deployable on multiple types of deployment models (public, private, hybrid) and providers (e.g.,
OVH, hyperscalers, other providers).

Priority M

Related architectural component(s) Distributed execution – Infrastructure management

Source Preparatory Study "Final Business Requirements" Framework Contract

Baseline technologies IaC (e.g., Ansible, Terraform)

Baseline component -

Req ID CFN.020

Short Title Encryption mechanisms

Description Simpl shall encrypt data at rest and data in motion following state of the art encryption protocols.

Priority M

Related architectural component(s) Security – Encryption

Source Preparatory study, "Final Business Requirements"

Baseline technologies -

Baseline component -

Annex 4 - Architecture Patterns

Microservices Integration Patterns

The following diagram describes at a high level how the different services of Simpl-Open integrate with each other within an agent but also between agents.

This architecture presents a combination of both API-driven and message-driven patterns.

To fulfill the specific requirements of Simpl-Open to have 2 tiers IAA, 2 distinct API Gateways co-exist to handle cross-cutting concerns:

The Tier I API Gateway is used to integrate and secure communications with the Tier I security provider from the participant and also with the
User Interfaces (microfrontends) which are part of the agent itself;
The Tier II API Gateway is used to integrate and secure communications with agents from other participants (or Governance Authority).

Both API Gateways will expose only synchronous HTTP endpoints to be called by their respective clients. When a request is received, the API Gateway
will apply a set of filters which implement the so-called "cross-cutting concerns" (e.g. authorisation, service mesh, circuit breaker - to be further detailed
later on). The last filter in the chain is a Proxy filter which redirects the request to the appropriate backend service which can handle it.

Backend services of 3 types exist:

Security related services which integrate synchronously over HTTP in a RESTful architecture;

2.

3.

a.

b.

Read-only services, which are aimed at providing a fast response to a frontend (which is blocked waiting for a response), that also integrate
synchronously over HTTP in a RESTful architecture;
Data processing services, which modify the state of the system (typically Create/Update/Delete), that integrate asynchronously over a message
broker and are divided in 2 parts:

The Service Orchestrator receives the synchronous request from the API Gateway, publish a message in the message broker (using the
outbox pattern, see below section) and acknowledge receipt of the request back to the API Gateway;
The Service Processor consumes asynchronously messages from the message broker, process them (potentially calling other services
using the same asynchronous pattern) and publishes a response back to the message broker for consumption by the Orchestrator which
provides it back to the client application (using polling or callback mechanism).

As it is assumed that data will not be directly consumed from the data provider node, a data & app copy/buffer (unclear at this stage how this should be) is
represented on the diagram. This copy/buffer could also be located in an infrastructure provider node.

The following diagram describes at a High Level how the different components presented on the above diagram interact with each other to render a
generic functionality.

For the sake of keeping this diagram simple, the outbox pattern is voluntarily not represented in this diagram and is subject to a dedicated diagram further
down the page.

Outbox Pattern

In monolith and many older applications, we commonly used transactions that spanned over multiple systems. Since everything was considered to be local
and within our control, applying ACID (Atomicity, Consistency, Isolation, Durability) principles was possible.

In microservices and distributed systems in general, this becomes increasingly challenging. Approaches such as implementing a multi-phase commit
protocol are difficult and often require heavy weight infrastructure to pull off.

Let's take the case of a Backend Service A (e.g. the SD Publication Service for a provider) which needs to persist data locally within an agent (e.g. in the
wallet) and at the same time must propagate that data to another Backend Service B (e.g. the Catalogue of the GA) to keep them in sync.

Our goal is to ensure that messages are going to be eventually published to the message broker, and ultimately available for Service B, while still
persisting the data to the database of Service A.

To make this possible, we will need to save the data the message that we wish to publish to the database in a single transaction. This is called the and Out
. The outbox pattern allows us to avoid the distributed transaction but still atomically save to the database and publish a message.box Pattern

The first part of the outbox pattern makes use of a transaction to save both the data and message in an atomic operation.

The second half of this pattern requires another process or worker that will be responsible for retrieving the pending messages from the database. Once
successfully retrieved, it can then proceed to publish the corresponding messages and update the state of the entries accordingly.

The sequence diagram for the transactional outbox pattern looks like this:

Annex 5 - Architecture building blocks

This Annex provides detailed descriptions of each of the building blocks that form Simpl-Open High Level Architecture.

Integration layer architecture

Resour
ce
discove
ry

Metadata
description

Resources (data, application and infrastructure) need a metadata description to be discoverable by consumers. This metadata
description informs consumers about the content of the resource, as well as its location, author, usage policy, etc.

Resource
Catalogue

The resource catalogue contains the list of all the available resources (data, application and infrastructure) for the consumers.
It ensures that the providers can publish metadata description of their resources and consumers can discover the existing
resources in an easy way.

Search
engine

The resource catalogue mentioned above implements query algorithms to facilitate filtering to make it possible to find the best
resources based on query parameters and matching metadata descriptions.

Access
control
& trust

Identity
provider
federation

Provides an identity federation for the participants of Simpl-Open. This block includes the identity information validation,
creation and management.

Authenticati
on provider
federation

Federates existing or data space specific authentication mechanisms. Participants will access with a specific token whenever
consumption or data search is needed, avoiding unapproved access to data. Additionally, it addresses Infrastructure
authentication mechanisms.

User roles The roles needed to grant permissions and access to determined building blocks within Simpl-Open are assigned at this stage
of the Access Control & Trust. Common roles across Simpl-Open enabled data spaces will provide interoperability.

Authorization This building block is responsible for handling the permissions of the different users so that it can be defined, what users what
actions are allowed to perform on a specific resource. This building block is of crucial importance, as giving a limited access to
the necessary users is one of the ways to keep a system secure.

Security
attribute
provider
federation

For each type of resource, different policies will apply. Often, the providers will define the access policies by assigned security
attributes to users. In general, security attribute providers can be third-parties. This building block federates the attribute
providers.

Policy
Enforcement

This building block ensures that all usage policies are effectively enforced within the data spaces.

Onboarding Provides the necessary features to submit/review/approve onboarding requests and deliver to the applicant the necessary
security credentials to join a data space.

Security Encryption Supports the creation and management of encryption and decryption, as well as key management in secure vaults.

Guaranteed
authenticity
and integrity

Supports the measures in place to ensure end-to-end data integrity, such that actors can validate the authenticity of the
delivered information. This building block links to the key management services.

Network VPN Virtual private networks may be created in order to protect the data traffic of Simpl-Open from external threats. The VPNs are
also to be used to transfer data or applications within and across data spaces over the public internet.

Firewall This building block allows the creation of firewall rules in order to restrict the inbound and outbound traffic of the private
networks. It provides an additional protection layer on top of identity and access management.

Federat
ion
manage
ment

Federation
orchestration

Provides the means to connect resources in a service network. Manages the operation of networks including processes for
monitoring, runtime issues, evaluation, etc. to meet the main principles of interoperability and federation. It also configures the
system components of Simpl-Open network to smoothly collaborate in a data space.

IT
Applicat
ion
Framew
ork

Configuratio
n service

This building block provides the necessary feature to configure all the other building blocks of Simpl-Open.

Circuit
breaker

Handle faults that might take some time to recover from, when connecting to a remote service or resource. This can improve
the stability and resiliency of a distributed application.

Microfronten
d framework

Micro frontends allow to break down a frontend application into smaller, independent pieces that can each be developed,
deployed, and scaled separately.

Policy
engine

This building blocks provides technical enabler capability for the Policy Enforcement building block.

Service
mesh

The service mesh building block provides a dedicated infrastructure layer for facilitating service-to-service communications
between services or microservices using a proxy. It provides various benefits such as providing observability into
communications, providing secure connections, and automating retries for failed requests.

Data layer architecture

Data
shari
ng

Simple
data
transfer

Simple data transfer building block is used for the exchange of small to medium sized sets of data between participants. The size of
the data is typically less than a few MB’s to 100 MB’s. Simple data transfers can happen synchronously using a single network
connection between participants.

Bulk
data
transfer

Bulk transfer building block is used for the exchange of large chunks of data between participants. The size of the data is in the
range of 100 MB’s and above. Bulk transfer building block typically proceeds as asynchronous processes where data is transmitted
in digestible chunks and recombined at the receiver side. Bulk data transfer can be sped up by using multiple network connections.

Data
streaming

Data streaming concerns a specific use case where the data exchange is not a singular occurrence, but should happen periodically.
Small chunks of data are continuously being transmitted from provider to consumer. Possible sources for data streaming can be
sensors or server logs. The use of data streaming typically coincides with real-time and near real-time data processing.

Data
store
connect
or

The data store connector foresees the integration with the internal data federation of a data provider. This connector foresees
integrations with multiple popular data management solutions, such as NTFS file systems, MySQL or PostgreSQL relational
databases, MongoDB key-value databases, …

Appli
catio
n
shari
ng

Calculati
on
algorith
ms

Simpl-Open will provide the means to share basic data science algorithms (e.g., linear regression, logistic regression, Random
Forest, K-means, …). The participant can download these tools in the infrastructure of their choosing.

Machine
learning
models

Simpl-Open provides access to an ecosystem to share machine learning models. This is possible if the providers make these models
discoverable and apply the correct access control policies such that consumers are authorised to access these machine learning
models.

Softwar
e &
apps

In general, Simpl-Open could provide access to any type of software application. An example is a 3D rendering engine that can
process the data from Destination Earth. This is possible if the providers make these apps discoverable and apply the correct access
control policies such that consumers are authorised to access these machine learning models.

Data
proce
ssing

Data
visualisa
tion

Simpl-Open provides access to open-source data visualizations tools like d3.js or leaflet.

Data
analytic
s tools

Simpl-Open provides access to basic data processing tools like Hadoop Ecosystem, Spark and Jupyter notebook to create scripts for
processing data and execute this scripts on shared data.

Anonym
ization

To ensure the privacy of data subject, data possibly has to be anonymised before it can be shared to certain data consumers. This
anonymisation typically involves aggregating data from multiple data subjects such that individual records cannot be recovered.

Data
gover
nance

Data
lineage

To monitor and ensure data integrity, tracking errors during data processing, it must be possible to show the complete flow of the
data, from start to finish. Data lineage provides a complete overview of the actions that have been taken on the data by all
participants.

Data
profiling

Data profiling is essentially the execution of the data governance strategy. It involves collecting descriptive statistics on the data,
collecting data types, tagging data with keywords, and other steps. It helps in analysing data, implementing a data governance
strategy, and determining data quality.

Data
quality
rules

The consumers can assess the data quality of the offered data. The data quality will be described in the data catalogue according to
certain data quality rules. These rules can contain attributes like data accuracy, whether data is complete, up to date, or available.

Distri
bute

Data
distributi

As Simpl-Open connects data, applications and infrastructure, it should enable a distributed execution of algorithms. This building
block manages the distribution of the data assets in such process.

d
exec
ution

on
manage
ment

Data
orche
strati
on

Data
orchestr
ation

The main building block for taking siloed data from multiple data storage locations, combining them, and making them available to
data consumer applications.

Infrastructure layer architecture

Cloud
computi
ng &
Edge
computi
ng

VM
provis
ioning

Simpl-Open provides an abstraction layer to provision Virtual Machines on the underlying infrastructure. The consumers may select
the virtual machine(s) which are the most tailored for their needs regarding a set of parameters (e.g. operation system, memory
size, network bandwidth, etc.).

Conta
iner
provis
ioning

Allows the provisioning & deployment of container (images) in order to launch and stop the execution of container-based algorithms,
generic applications or custom code. The containers may be preferred over the VMs for the consumers in case the application
portability is the most important aspect for them.

Serve
rless
provis
ioning

Serverless computing abstracts away most of the OS configuration, maintenance tasks, and notion of the underlying instances that
software runs on. Simpl-Open offers serverless computing services provided by the infrastructure.

Block
storage

Simpl-Open provides an abstraction layer to provision various kinds of storage on the underlying infrastructure. Block storage
provides low level storage capabilities to consumers to store any type of binary data in ordered blocks.

File
syste
m
provis
ioning

Simpl-Open provides an abstraction layer to provision various kinds of storage on the underlying infrastructure. File systems are
provided to consumers to store files in structured directories.

PaaS
services

SQL
datab
ases

Standard relational databases. These are the most suitable option for storing primarily structured, transaction-oriented data, in case
the structure does not change frequently and when the data integrity is important. The database options provided by Simpl-Open
can be open-source or commercially licensed. A relevant tool example include MySQL as the most prominent open source solution
in the current market.

NoSQ
L
datab
ases

NoSQL databases are the best option in case the user needs more flexible schemas and/or horizontal scaling. They also enable
faster queries due to the data model. Simpl-Open may offer cloud-native or open-source non-relational databases for the users.
Among others, tools like Apache Cassandra or MongoDB provide this type of database management

Time
series
datab
ases

Databases designed specifically for the storage and retrieval of data associated with a timestamp (time series data). These
databases are typically the most suitable for storing sensor data, as they can compress, manage and summarize the time series
data, and handle time-aware queries. As this type of data is useful for monitoring and reporting capabilities, tools like Prometheus
and Graphana combined become a powerful stack for this purpose.

Graph
datab
ases

Graph databases are built to allow an easy/performant way to query relationships. Graph databases use nodes to store data entities
and edges to store relationships. The best examples are (social) networks or supply chains.

AI
provis
ioning

Simpl-Open may provide abstractions to allow for a simple deployment and execution of AI models. The consumers may select from
the AI services provided through Simpl-Open and use them to gain insights from their own data set(s). Many solutions can be found
in the LF & AI landscape founded by Linux, for instance TensorFlow.

Block
chain

Simpl-Open will provide blockchain services to enable building applications where a decentralised, shared system of records is
needed. Its most important advantages are data integrity, reliability, the speed of the storage, immutability and transparency,
therefore, it is ideal for, for example, recording logs for audit and regulatory compliance or documenting payments.

Mess
aging
busses

The messaging busses mediate the message exchange between different systems via a shared set of interfaces (message bus).
The sender may publish messages on a queue, which will be transferred to the subscribing receiver(s). Apache Kafka is a relevant
solution that specifically implements a messaging system as described.

Analyt
ics
provis
ioning

This building block enables the consumers of Simpl-Open to access high-level data analytics services without the need to provision
the tooling manually (e.g., ETL services, Apache Spark).

HPC HPC In a later phase, Simpl-Open will provide high performance computing power to enable parallel data processing and the conduction
of complex, resource-intensive calculations.

Distribut
ed
execution

Infrast
ructur
e
mana
geme
nt

The infrastructure management runs and clusters the underlying networked computers from different providers to create the
impression that a single and reliable machine is processing the computations. It allows computations to be executed close to where
the data is located.

Infrastru
cture
orchestr
ation

Infrast
ructur
e
orche
stration

This building block is responsible for automating the provisioning of the infrastructure resources needed for the computations
conducted on Simpl-Open. It allows the various infrastructure providers to interconnect and exposes them via a standard interface.

Administration layer architecture

C
o
n
tr
a
cts

License
asset
managem
ent

Administrates any topic related to recommended licenses by both Simpl-Open and the Members States, compatibility and
harmonization between the different data spaces.

SLA
managem
ent

Hosts the mechanism that defines and shares the Service Level Agreements between contractors. Administration capabiltiies will
handle SLA-related issues as well as SLA sharing when required.

Usage
contracts

It administrates the types of resources that will be provided to the consumers by the resources providers, and the conditions which
consumers must adhere to.

Billing The administration of any topic related to the contract billing, such as conditions or specifications are included in this building block.
Specifications may include procedures, due times, quantities, periods of payments, etc.

M
o
ni
t
o
ri
ng

Data
usage

Supervision of the amount and type of data flowing through Simpl-Open; and what it is being used for.

Applicatio
n usage

Supervision of what are the apps being used by any of the consumers; and how they are being used.

Infrastruct
ure usage

Supervision of the particular infrastructure resources that are being used.

Usage
policies

Integration of usage control capabilities regarding the policies that can be defined in the environment. These policies will describe the
terms and conditions under which apps, data or infra can be used on the consumer side.

Energy
metrics
and alerts

Monitoring supervision will be reflected in a functionality that gathers metrics and gives alerts regarding the general state of Simpl-
Open in terms of data, app and infra usage in order to optimize energy usage and meet sustainability goals.

QoS
metrics
and alerts

Monitoring supervision will be reflected in a functionality that gathers metrics and gives alerts regarding the general state of Simpl-
Open in terms of data, app and infra usage, providing information about the quality of service that is being given.

Performan
ce
monitoring
&
enactment

As a previous stage to the performance reporting building block, usage and resource availability performance is monitored in a real-
time basis to feed the information sets needed by the reporting block.

R
e
p
o
rt
ing

Performan
ce

Allows the analysis of the performance of each of the functionalities to serve as a source for the general report building block. Along
with the monitoring block, provides past performance and history records of the metrics gathered at the monitoring stage.

Platform
usage

Creates reports and supervises the use of the global Simpl-Open platform in both the infrastructure and data layer by the consumers
and providers.

Energy
efficiency
&
sustainabi
lity

To support the objective of the Green Deal, this component will provide insights into the energy efficiency and environmental
performance of Simpl-Open’s building blocks to ensure that the resources operate in a low power mode.

Log info
extraction

Provides the information needed obtained from sources such as the audit logging helping to generate a comprehensive report of the
functionalities.

Exporting Exporting building block allows information gathered by the reporting processes to be external and available outside of Simpl-Open
environment.

L
o
g
gi
ng

Logging Record and manage events related to the state of the Simpl-Open agent, the usage of a resource and business events.

A
u
dit

Audit The administrator can investigate the activities taking part in each of the layers of Simpl-Open to further develop a reporting about
issues or non-compliant conditions of the resource at data or infrastructure stages. This building block gathers the information of
auditing actions performed in Simpl-Open context, allowing to undertake organizational or legal measures that ensure the compliant
functioning of Simpl-Open.

Governance layer architecture

Supp
ort

Support
page

Consumers will have access to a support webpage with collected and useful documentation regarding Simpl-Open with a FAQ
format.

Ticketing
system

Users will have availability of a ticketing system that logs the issues regarding Simpl-Open to be reported to the administration.

Helpdesk Third party contractors can connect with the consumers and providers in case the issues remain unsolved. The governance
board will coordinate these three sub-blocks.

CSIRT Incident
response

Coordination at the administration layer will give a response to security incidents with proper procedures to restore full Simpl-
Open functionality as soon as possible.

Threat
monitoring

Proactive threat monitoring and follow-up of possible malicious activities affecting Simpl-Open to avoid potential security
breaches before they happen.

	Functional and Technical Architecture Specifications

